

Wasserrechtsverfahren

Antrag auf gehobene wasserrechtliche Erlaubnis

Entlastunganlage für Niederschlags- und Mischwasser der Gemeinde Neusitz

Projekt-Nr.: **295809** Bericht-Nr.: **01**

Erstellt im Auftrag von:

Gemeinde Neusitz

Im Dorf 14

91616 Neusitz

Johannes Bechstein, M.Eng. Felix Übelmesser, B.Eng.

12.12.2024

CDM Smith SE · Fürther Straße 232 · 90429 Nürnberg · tel: 0911 40100-40 · fax: 0911 40100-30 · nuernberg@cdmsmith.com · cdmsmith.com · cdmsmith.com Bankverbindungen: UniCredit Bank GmbH IBAN DE44 5082 0292 0003 0451 45 BIC (Swift) HYVEDEMM487

Landesbank Baden-Württemberg IBAN DE60 6005 0101 0002 3624 78 BIC (Swift) SOLADEST600

Commerzbank Bochum IBAN DE39 4304 0036 0221 1134 00 BIC (Swift) COBADEFF430

Sparkasse Darmstadt IBAN DE86 5085 0150 0022 0019 81 BIC (Swift) HELADEF1DAS

Sitz der Gesellschaft: Bochum · Amtsgericht Bochum HRB 20258

Vorstand: Dr. Ralf Bufler (Vorsitz), Andreas Roth · Vorsitzender des Aufsichtsrats: Thierry Desmaris

Q:\295500-295999\295809\600_Arbeitsergebnisse\20241212_WR_Wachsenberg_VA\20240412_WR-Neusitz RÜB Wachsenberg Erläuterung.docx

INHALTSVERZEICHNIS

1	VORHABEN UND VORHABENSTRAGER	5
2	UNTERLAGEN	5
3	ZWECK DES VORHABENS	6
4	BESTEHENDE VERHÄLTNISSE	7
4.1	Lage des Vorhabens und bestehende Anlagen	7
4.2	Baugrund- und Grundwasserverhältnisse	7
4.3	Vorfluterverhältnisse und hydrologische Daten	7
5	ART UND UMFANG DES VORHABENS	8
5.1	Grundlagen	8
5.2	Flächenausweisungen	9
5.3	Geplante Maßnahmen	10
5.3.1	Konstruktives Konzept	10
5.4	Berechnungs- und Bemessungsgrundlagen	11
5.4.1	Nachweis nach ATV DVWK-A 128 – Volumen RÜB	11
5.4.2	Nachweis nach DWA-M 153 – Behandlungsbedarf	12
5.4.3	Nachweis nach DWA-A 118 – Hydraulischen Leistungsfähigkeit des Kanalnetzes	13
5.4.4	Nachweis nach DWA-A 166 – Konstruktive Gestaltung und Ausrüstung	13
5.4.5	Nachweis Bodenfilteranlage	14
5.5	Ertüchtigung Regenüberlaufbecken	14
5.5.1	Kulissentauchwand	15
5.5.2	Reinigungseinrichtung	15
5.5.3	Messung des Entlastungsabflusses	16
5.5.4	Drosselschacht	16
5.5.5	Entlastungsgerinne / -kanal	16
5.5.6	Einleitstellen	17
6	AUSWIRKUNGEN DES VORHABENS	17
7	DURCHFÜHRUNG DES VORHABENS	17
8	RECHTSVERHÄLTNISSE / ANTRAG	17
9	WARTUNG UND VERWALTUNG	18

ABBILDUNGSVERZEICHNIS

	Seite
Abbildung 3: Bestandsanlage – Maßnahmen zur Ertüchtigung des RÜBs	10

TABELLENVERZEICHNIS

	Seite
Tabelle 1: Vorfluterkennwerte Brunnentalgraben	8
Tabelle 2: Bemessungsabflüsse nach KOSTRA-Daten (statische Berechnung)	13
Tabelle 3: Schwellenhöhen und Höhenkoten	14

ANHANG

Anlage 1	Fotodokumentation Status Quo
Anlage 2	Einzugsgebietsdaten
Anlage 3 Anlage 3.1 Anlage 3.2	Auswertung Schmutzfrachtberechnung Ergebnisse Zentralbeckenberechnung nach ATV DVWK-A 128 Ergebnisse Einzelbeckenberechnung nach ATV DVWK-A 128
Anlage 4	Hydraulische Nachweise nach DWA-A 166
Anlage 5	KOSTRA-Daten
Anlage 6	Zusammenstellung der Einleitstelle
Anlage 7	Bauwerksverzeichnis
Anlage 8	Planunterlagen
Anlage 8.1	Übersichtslageplan
Anlage 8.2	Berechnungslageplan Bestand
Anlage 8.3	Lageplan Regenüberlaufbecken
Anlage 8.4	Bauwerksplan Regenüberlaufbecken
Anlage 8.5	Lageplan der Bodenfiltrationsanlage mit Schnitten und Details (Originalplan von
Ingenieur	püro Stein; keine Änderungen durchgeführt)

1 VORHABEN UND VORHABENSTRÄGER

Gegenstand des Antrags auf gehobene wasserrechtliche Erlaubnis ist die Entwurfsplanung zur Ertüchtigung und Erweiterung der bestehenden Entlastungsanlage zur Sicherstellung der ordnungsgemäßer Niederschlags- und Mischwasserableitung am RÜB Wachsenberg.

Antragsteller für die gehobene Erlaubnis zum Einleiten von Niederschlagswasser und Mischwasser in den Vorfluter Brunnentalgraben ist die

Gemeinde Neusitz Im Dorf 14 91616 Neusitz

2 UNTERLAGEN

- [U1] Schreiben vom WWA Ansbach an das LRA Ansbach, Vollzug des Wassergesetze Einleiten von Abwasser aus dem OT Wachsenberg durch die Gemeinde Neusitz, Stellungnahme des amtlichen Sachverständigen, 15.03.2023
- [U2] Bestandsunterlagen, Ingenieurbüro Stein, Neusitz, 1994
- [U3] Schmutzfrachtberechnung, b-a-u Ingenieurgesellschaft für Bauwesen, Anlagenbau und Umwelttechnik mbH, Ansbach, 2021
- [U4] Starkniederschlagshöhen für Deutschland, KOSTRA-Atlas, Deutscher Wetterdienst (DWD), Offenbach am Main, 2018
- [U5] LfU Merkblatt Nr. 4.4/22, Bayerisches Landesamt für Umwelt (LfU), Augsburg, 2018.
- [U6] Arbeitsblatt DWA-A 118, Hydraulische Bemessung und Nachweis von Entwässerungssystemen, GFA, Hennef, 2006.
- [U7] Arbeitsblatt ATV-A 128, Richtlinien für die Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen, GFA, Hennef, 1992.
- [U8] Merkblatt DWA-M 153, Handlungsempfehlungen zum Umgang mit Regenwasser, Hennef. 2007.
- [U9] Arbeitsblatt DWA-A 166, Bauwerke der zentralen Regenwasserbehandlung und -rück-haltung Konstruktive Gestaltung und Ausrüstung, GFA, Hennef, 2013.
- [U10] Arbeitsblatt DWA-A 110, Hydraulische Dimensionierung und Leistungsnachweis von Abwasserleitungen und -kanälen, GFA, Hennef, 2006.
- [U11] Arbeitsblatt DWA-A 111, Hydraulische Dimensionierung und betrieblicher Leistungsnachweis von Anlagen zur Abfluss- und Wasserstandsbegrenzung in Entwässerungssystemen, GFA, Hennef, 2011.

- [U12] Arbeitsblatt DWA-A 112, Hydraulische Dimensionierung und Leistungsnachweis von Sonderbauwerken in Abwasserleitungen und -kanälen, GFA, Hennef, 2007.
- [U13] Arbeitsblatt ATV-DVWK-A 157, Bauwerke der Kanalisation, GFA, Hennef, 2020.
- [U14] Merkblatt DWA-M 158, Bauwerke der Kanalisation Beispiele, GFA, Hennef, 2006.
- [U15] Merkblatt DWA-M 176, Hinweise zur konstruktiven Gestaltung und Ausrüstung von Bauwerken der zentralen Regenwasserbehandlung und -rückhaltung, GFA, Hennef, 2013.
- [U16] Merkblatt ATV-DVWK-M 177, Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen, GFA, Hennef, 2001.

3 ZWECK DES VORHABENS

Mit dem Bescheid des Landratsamts Ansbach vom 28.05.2003 wurde der Gemeinde Neusitz eine wasserrechtliche Erlaubnis unter Normalanforderungen erteilt. Die im Wasserrechtsbescheid erteilte gehobene Erlaubnis zur Einleitung von vorentlastetem Mischwasser und Niederschlagswasser in den Brunnentalgraben, ausgestellt vom Landratsamt Ansbach, endete am 31.12.2023. Auf die Beantragung der Verlängerung dieser Frist am 21.02.2023 hat das Landratsamt Ansbach die beschränkte Erlaubnis bis zum 31.12.2025 verlängert. Es ist eine prüffähige Sanierungsplanung bis zum 31.12.2024 vorzulegen.

Die durch den Gesetzgeber gestellten Anforderungen an die Einleitung aus kommunalen Mischwasserkanalisation können mit der bestehenden Entlastungsanlage, die sich im Einzugsgebiet befindet, nicht vollständig erfüllt werden. Die qualitativen und quantitativen Anforderungen sowie weitergehende Anforderungen an Entlastungsanlagen gemäß Merkblatt Nr. 4.4/22 (LfU, 2018) erfordern eine Ertüchtigung des Regenüberlaufbeckens und Erweiterung des Regenrückhalteraums zur Verminderung des Schadstoffeintrags in den Brunnentalgraben.

Im Zuge des Vollzugs des Wasserrechts sind nachfolgenden Auflagen und Bedingungen erforderlich, da die bestehende Anlage nicht mehr den Anforderungen an den Gewässerschutz entspricht:

- Sanierung des Kanalnetzes
- Überrechnung der Mischwasserbehandlungsanlage
- Rückhalt von Schwimm- und Grobstoffen aus dem Mischwasser vor der Einleitung in das Regenrückhaltebecken

Die vorliegende Entwurfsplanung dient als Grundlage der Durchführung der erforderlichen wasserrechtlichen Genehmigungsverfahren für die bauliche Umsetzung der Ertüchtigung des Regenüberlaufbeckens (RÜB) und Erweiterung des Regenrückhalteraums (RRR).

4 BESTEHENDE VERHÄLTNISSE

4.1 Lage des Vorhabens und bestehende Anlagen

Die Gemeinde Neusitz liegt im mittelfränkischen Landkreis Ansbach und ca. 3 km östlich von Rothenburg ob der Tauber. Das Dorf Wachsenberg ist ein Ortsteil der Gemeinde Neusitz. Wachsenberg weist hauptsächlich Wohnbebauung auf sowie ein kleineres Gewerbegebiet im Osten des Ortsteils.

Das Gebiet entwässert im Mischsystem. Der Abfluss nach Neusitz erfolgt über eine Drossel mit einer Abflussbegrenzung auf 2,5 l/s nach dem Regenüberlaufbecken. Der Überlauf des Regenüberlaufbeckens erfolgt in das Regenrückhaltebecken. Das Regenrückhaltebecken dient als Entlastungsbauwerk für Mischsystem und entlastet über eine Verrohrung unter der Staatsstraße St2250 in den Brunnentalgraben.

Das bestehende Regenüberlaufbecken (RÜB) und Regenrückhaltebecken (RRB) in Form eines Retentionsbodenfilters liegen auf den Grundstück Flurnummer 89 der Gemarkung Neusitz. Eigentümer des Grundstücks ist die Gemeinde Neusitz.

4.2 Baugrund- und Grundwasserverhältnisse

Gemäß der geologischen Kartierung des LfUs besteht der geologische Untergrund im Bereich der Mischwasserentlastungsanlage (MWB) "Neusitz" aus vorherrschend kalkhaltiger Gley-Kolluvisol und Kalkgley-Kolluvisol, gering verbreitet Gley-Pararendzina aus Lehm bis Ton (Talsediment) mit dem Kennung 62e.

4.3 Vorfluterverhältnisse und hydrologische Daten

Der Brunnentalgraben (Gewässer III. Ordnung) beginnt in Wachsenberg und fließt in südlicher Richtung unter der Staatsstraße St2250 durch. Er umfließt den Ortsteil Neusitz östlich und mündet im weiteren Verlauf südlich von Gebsattel in die Tauber.

Gemäß den Angaben des WWA Ansbach hat der Brunnentalgraben an der Einleitstelle ein Einzugsgebiet von circa 0,70 km². Der MNQ beträgt 1,5 l//s, der MQ beträgt 7,0 l/s.

Tabelle 1: Vorfluterkennwerte Brunnentalgraben

Brunnentalgraben

Einzugsgebietsfläche $A_{EZG} = 0,70 \text{ km}^2$

Gewässerordnung

Gewässerfolge Erbacher Bach, Wörnitzm, Kinrberger Bach,

Tauber, Main

Mittlerer Niedrigwasserabfluss MNQ 0,0015 m³/s

Mittlerer Abfluss MQ 0,007 m³/s

Die Zusammenstellung der Einleitstellen sind in Anlage 6 aufgelistet.

5 ART UND UMFANG DES VORHABENS

5.1 Grundlagen

Gemäß der öffentlich-rechtlichen Zweckvereinbarung zwischen der Gemeinde Neusitz und Stadt Rothenburg o. d. T. wird das vorentlastete Misch- bzw. Schmutzwasser der Gemeinde Neusitz ab dem Übergabepunkt Schacht 912 zur Mitbehandlung in der Kläranlage Rothenburg o. d. T. (Ausbaugröße 38.000 EW) mitbehandelt. Um den Zufluss sowie die Belastungsdaten einzuhalten ist das nachgeschaltete RÜB Neusitz verantwortlich.

Nachfolgender Zufluss und Belastungsdaten sind einzuhalten:

- Istbelastung Neusitz 2.500 EW mit einer maximalen Schmutzfracht SFmax von 150 kg BSB5/d
- Maximale Jahresabwassermenge von 180.000 m³/a
- Maximaler Drosselabfluss von 13 l/s
- Maximal zulässiger Fremdwasser von 25 %

Mit dem Schreiben vom Wasserwirtschaftsamts Ansbach am 15.03.2023 an das Landratsamt Ansbach sind im Rahmen des Wasserrechtsverfahrens zur Mischwassereinleitung nachfolgende Antragsunterlagen zu erbringen:

- Antragsunterlagen nach Verordnung über Pläne und Beilagen in wasserrechtlichen Verfahren (WPBV)
- Bestandsaufnahme und ggf. Herleitung/ Bewertung nach ATV DVWK A 198
- Nachweis ATV DVWK-A 128 / DWA-A 102 (mit weitergehenden Anforderungen nach LfU Merkblatt 4.4/22), Einzugsgebietsermittlung (Bestandsaufnahme, Prognose)

- Nachweis für Sonderbauwerke (gemäß DWA A 110, A111, A112, A118, A166, M176) inkl.
 Bewertung Ist-Zustand, ggf. Handlungsbedarf
- Hydraulische Überrechnung der Mischwasserkanalisation nach DWA-A 118
- Längs- und Querschnitte Sonderbauwerke
- Aktuelle Bestandspläne, Übersichtslageplan, Lageplan
- Ggf. eine Sanierungsplanung für das Mischwasserbehandlungsbauwerk
- Ggf. Ergebnis Kanalbefahrung/ Zustandserfassung/ Zustandsbewertung mit Schadensklassifizierung (siehe DWA-M 149 ff./ ggf. einen Sanierungsplanung und Sanierungskonzept siehe DWA-A 143 ff.)
- Ggf. Überprüfung / Überrechnung vorhandene Rückhalteräume
- Nachweis M 153 quantitativ
- Zusammenstellung der Einleitung; Anlage 11 REWas Stand 01/2005
- Aktualisiertes Bauwerksverzeichnis der Mischwasserbehandlungsanlage

5.2 Flächenausweisungen

Das Ortsteil Wachsenberg ist im Mischsystem erschlossen und bindet im Nord-Osten über das Gewerbegebiet an das Ortsnetz von Neusitz an. Das Abwasser wird im RÜB Wachsenberg mit einer Drossel von 2,5 l/s vorentlastet.

Die jeweiligen Befestigungsgrade wurden anhand der vorliegenden ursprünglichen Wasserrechtlichen Genehmigung geprüft. Es kam hier in der Vergangenheit zu keinen wesentlichen Änderungen, daher wurden die vorhandene Ermittlung für die Berechnungen herangezogen und in den entsprechenden Planunterlagen dargestellt.

Im "Gewerbegebiet Wachsenberg" liegt eine Änderung des Bebauungsplanes vor. Dieser Bebauungsplan sieht vor, dass das Regenwasser gedrosselt in den Mischwasserkanal eingeleitet werden soll. Dies wurde auch schon für den ursprünglichen Bebauungsplan vorgesehen. Dementsprechend hat diese Änderung des Bebauungsplanes keinen Einfluss auf die eingeleitete Regenwassermenge im Mischsystem. Die Flächen wurden für den Bestand und die Prognose dementsprechend gleich berücksichtigt.

Die Einzugsgebiete sind auf dem Gebietseinteilungsplan der Anlage 8 und die Daten zu den Einzugsgebieten und dem Abwasseranfall sind dem Anlage 2 zu entnehmen.

5.3 Geplante Maßnahmen

5.3.1 Konstruktives Konzept

Zur Verbesserung des Gewässerschutzes ist eine Ertüchtigung des Regenüberlaufbeckens zu prüfen.

Aufgrund gestiegener gesetzlicher Anforderungen und hinsichtlich des aktuellen Stands der Technik sind im Bereich des RÜBs maschinentechnische Teile nachzurüsten und zu erneuern. Eine Übersicht der geplanten Maßnahmen zur Ertüchtigung und Nachrüstung des RÜBs sind in Abbildung 1 dargestellt.

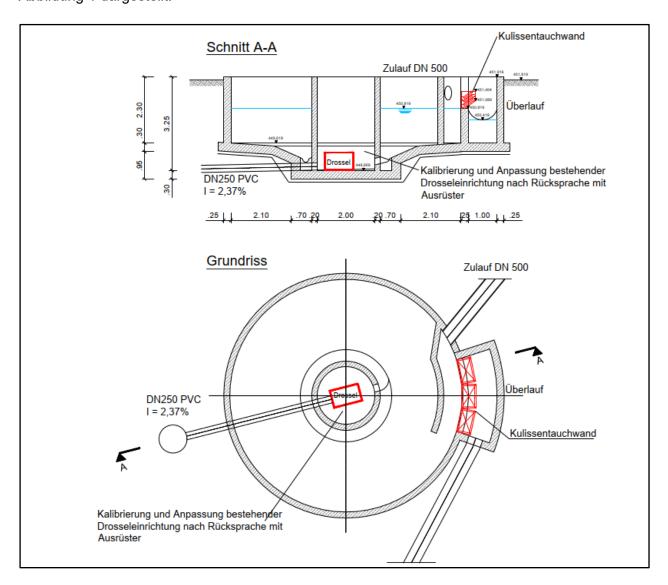


Abbildung 1: Bestandsanlage – Maßnahmen zur Ertüchtigung des RÜBs

5.4 Berechnungs- und Bemessungsgrundlagen

Die Berechnungen und Bemessungen erfolgen entsprechend den vorgeschlagenen Verfahren im DWA-Regelwerk, den Merkblättern des Bayerischen Landesamtes für Umwelt sowie den Deutschen und Europäischen Normen.

5.4.1 Nachweis nach ATV DVWK-A 128 - Volumen RÜB

Im Zuge der Beantragung des Wasserrechts für das RÜB Neusitz der Gemeinde Neusitz wurde die Schmutzfrachtberechnung der Stadt Rothenburg o.b.T. aktualisiert. Zur korrekten Abbildung der Abflüsse wurde damals auch das RÜB Wachsenberg berücksichtigt. Der geführte Nachweis kann daher auch hier angesetzt werden.

Der Nachweis nach ATV-A 128 wurde mit dem Programm BWK Verena.M7 durch das Ingenieurbüro b-a-u ing.ges.mbH durchgeführt.

Der Volumenunterschied zum alten Nachweis des IB Stein aus dem Jahr 1994 ergibt sich aus den folgenden Gründen:

- Größere Gesamtfläche (Damals A_E = 23,88 ha, heute 24,75 ha)
- Befestigungsgrad (Damals gesamt circa 20,72%, heute gesamt circa 20 %)
- Größere Einwohnerwerte (Damals 120 EW, heute 122 EW)
- Geringerer Drosselabfluss (Damals 10 l/s, heute 2,5 l/s)
- Weitergehende Anforderungen nach LfU Merkblatt Nr. 4.4/22 (Damals normale Anforderungen)

Die Stadt Rothenburg ob der Tauber hat eine Schmutzfrachtberechnung mit Ansätzen für die Gemeinde Neusitz durchgeführt. Da diese Berechnung genauer ist als das vereinfachte Aufteilungsverfahren, wurde im Zuge dessen das erforderliche Volumen für das RÜB Neusitz mit der Schmutzfrachtberechnung der Stadt Rothenburg festgelegt.

Die Erweiterung der Ansätze der Flächen für die Gemeinde Neusitz erhöht die einzuhaltende entlastete Gesamtschmutzfracht im Prognose-Zustand im Einzugsgebiet der Kläranlage Rothenburg o.d.T. um ca. 10.000 kg/a. Das Becken Neusitz hat einen Zuwachs der entlasteten Gesamtschmutzfracht von 5630 kg/a. Die einzuhaltende Jahresgesamtschmutzfracht ist um mehr als die entlastete Jahresgesamtschmutzfracht gestiegen. Damit ist das vorhanden Beckenvolumen von V = 55m³ ausreichend, um den Nachweis einzuhalten.

Die Auswertung der Schmutzfrachtberechnung kann in Anlage 3 eingesehen werden.

Zusätzlich wird das Mindestspeichervolumen nach Merkblatt Nr. 4.4/22 des LfU nachgewiesen.

$$V_{s,min} \ge 5,40 + 5,76 * q_R in m^3/ha$$

$$V_{min} = V_{s,min} * A_u in m^3$$

$$q_R = Q_{r24} / A_u = (Q_d - Q_{t24} - Q_{rT24}) / A_u = 2,23 / 4,95 \text{ ha} = 0,450 \text{ l/s/ha}$$

$$V_{s,min} = 5,40 + 5,76 * q_R = 5,40 + 5,76 * 0,45 = 7,99 m^3/ha$$

$$V_{min} = 7,99 * 4,95 = 39,55 m^3$$

Da das Mindestspeichervolumen von 39,55 m³ geringer ist als das vorhandene Beckenvolumen von 55 m³ ist der Nachweis eingehalten und das Volumen ausreichend.

5.4.2 Nachweis nach DWA-M 153 – Behandlungsbedarf

Zur qualitativen Bewertung des anfallenden Niederschlagswassers wird das Merkblatt DWA-M 153 herangezogen. Hiernach wird dem Gewässer, in welches eingeleitet werden soll, eine Gewässerpunktzahl zugeordnet. Diese Gewässerpunktzahl G wird dem Emissionswert der Anlage gegenübergestellt. Der Emissionswert E ist im vorliegenden Fall der Abflussbelastung B gleich zu setzten. Diese setzt sich aus den Einflüssen aus der Luft und der Verschmutzung der Flächen, auf denen das Niederschlagswasser anfällt, zusammen. Um eine Bewertung auf der sicheren Seite durchzuführen, wurde für die Ermittlung der Verschmutzung der Flächen der schlechteste Wert für die gesamte Fläche angesetzt.

Für das Einzugsgebiet der Behandlungsanlagen ergibt sich eine Gesamtfläche von A_{E,k} =

24,95 ha und eine abflusswirksame Fläche von $A_U = 4,95$ ha.

Der Brunnentalgraben wird aufgrund seiner Fließgeschwindigkeit von v < 0.3 m/s und seiner Wasserspiegelbreite von $b_{Sp} < 1$ m als kleiner Flachlandbach Typ G6 eingeordnet.

Die Einflüsse aus der Luft können in Wohngebieten in Typ L1 gesetzt werden, da in der Gemeinde Neusitz Siedlungsbereiche mit geringem Verkehrsaufkommen vorherrschend sind. Die Belastungen aus der Fläche ergeben 12 Belastungspunkte, da die Flächen Typ F3 sind. Insgesamt ist somit die Abflussbelastung geringer als die Gewässerpunkte.

Eine Behandlung des anfallenden Niederschlagswassers ist vor der Einleitung in das Gewässer nicht erforderlich.

5.4.3 Nachweis nach DWA-A 118 – Hydraulischen Leistungsfähigkeit des Kanalnetzes

Gem. DWA- A 118 beträgt für die vorliegende Siedlungsstruktur (ländlicher Raum) ist ein 1-jährlicher Bemessungsregen zu wählen. Aufgrund der Neigung und der Bebauung beträgt die maßgebliche Dauerstufe 15 min. Die Regenspende nach KOSTRA-DWD beträgt $r_{15,1}$ = 123 l/(sxha). Somit ergibt sich ein Bemessungsregen von Q = 608 l/s.

Das geringste Abflussvermögen im Zulauf zum RÜB beträgt der vorliegenden ursprünglichen Planung Q_{Voll} = 614 l/s. Die Ableitung des Bemessungsregens kann durch die bestehenden Kanäle problemlos erfolgen.

5.4.4 Nachweis nach DWA-A 166 - Konstruktive Gestaltung und Ausrüstung

Das Arbeitsblatt DWA-A 166 dient der konstruktiven Gestaltung und Ausrüstung von Bauwerken der zentralen Regenwasserbehandlung und -rückhaltung. Hierbei ist die hydraulische Funktion des Regenbeckens und seine Einzelkomponenten rechnerisch nachzuweisen.

Grundlage der hydraulischen Nachweise bildet die Berechnung des RÜB-Volumens (siehe Kapitel 5.4.1), wonach das Bestandsvolumen von 55 m³ ausreichend ist.

Die Festlegung der Schwellenhöhen und damit der Wasserspiegellagen im RÜB erfolgte unter der Vorgabe, dass die Wasserspiegellagen in den angeschlossenen Kanälen nicht verändert werden.

Bei der Festlegung der Schwellenhöhen und damit der Wasserspiegellagen wurden nachfolgende Lastfälle betrachtet, die sich hinsichtlich der Zuflüsse zum RÜB unterscheiden:

Tabelle 2: Bemessungsabflüsse nach KOSTRA-Daten (statische Berechnung)

Lastfall	Zufluss RÜB
Kritischer Mischwasserabfluss	Q _{krit} = 149 l/s
Abfluss bei Berechnungsregen der Jährlichkeit 1	$Q_{B\ddot{U}(n=1)} = 608 \text{ I/s}$

Bei den Bemessungsabflüssen ist der Drosselabfluss von 2,5 l/s, der der Kläranlage Rothenburg o. d. T. zugeleitet wird, maßgebend.

Der "kritische Mischwasserabfluss" wurde entsprechend den weitergehenden Anforderungen über eine kritische Regenspende von r_{krit} = 30 l/s/ha errechnet. Die Bemessungsabflüsse der Jährlichkeit 1 errechnen sich über die einen Regenspende von $r_{15,1}$ = 123 l/s/ha.

Die Schwellen und Einleitstellen sind auf folgenden Höhen vorgesehen:

Tabelle 3: Schwellenhöhen und Höhenkoten

Schwelle	Schwellenhöhe
Beckenüberlaufschwelle RÜB zum RRB (Entlastungsbeginn)	450,819 m ü.NN
Einlauf zum Retentionsbodenfilter	450,259 m ü.NN

Die Beckenüberlaufschwelle im Regenüberlaufbecken ist höher als die Höhenkoten der Einleitstellen, sodass ein Abfluss ohne Dauerstau in den Bodenfilter gewährleistet werden kann.

Bei einem rkrit = 30 l/s x ha wir die Oberflächenbeschickung von leicht überschritten. Diese beträgt 11,7091 m/h. Bei einer kritischen Regenspende von 15 l/s x ha beträgt die Oberflächenbeschickung qa = 5,844 m/h und wird eingehalten.

Dem Regenüberlaufbecken ist ein Bodenfilter nachgeschaltet. Dieser gilt als weitere Aufbereitungsstufe und hält die Entlasteten Frachten zurück. Aufgrund dieser weiteren Behandlungsstufe und dem Rückhalt der Schmutzstoffe kommt es nicht zu einer nachteiligen Veränderung im Gewässer. Dies Bestätigt auch die Besichtigung der Einleitungsstelle. Bei dieser konnten keine nachteiligen Veränderungen festgestellt werden.

5.4.5 Nachweis Bodenfilteranlage

Die Schmutzfrachtberechnung hat das Regenüberlaufbecken in Wachsenberg integriert, entsprechend diesem Nachweis wird die Schmutzfracht eingehalten. Zusammen mit den Nachweisen gem. DWA-A 166 hält dieses Bauwerk – unter Berücksichtigung einiger Sanierungsmaßnahmen – alle Anforderungen ein.

Der nachgeschaltete Bodenfilter wurde nicht in der Schmutzfrachtberechnung berücksichtigt. Durch die Durchströmung des Bodenfilters sowie die Zwischenspeicherung des Mischwassers ergeben sich Vorteile hinsichtlich der Gewässerbelastung.

Das entlastete Mischwasser wird nochmals durch die Bodenzone gereinigt. Weiterhin werden Entlastungsstöße vermieden, da durch den Bodenfilter eine gleichmäßige geringe Wassermenge in das Gewässer abgegeben.

5.5 Ertüchtigung Regenüberlaufbecken

Das bestehenden Regenüberlaufbecken (RÜB) auf dem Grundstück Flurnummer 89 bleibt als Fangbecken im Nebenschuss bestehen.

Das RÜB ist als Kompaktzyklonbecken mit einem Nutzvolumen von 55 m³ ausgeführt worden. Zur Entlastung des Mischwasser ist ein Beckenüberlauf mit einer Höhe von 450,819 mNN. Vorhanden. Im Anschluss an das RÜB ist ein Bodenfilter mit einem Nutzvolumen von 300 m³ vorhanden. Im Anschluss wird das gereinigte Mischwasser in den Brunnentalgraben entlastet.

Das RÜB wird maschinentechnisch nachgerüstet, um den gesetzlichen Anforderungen und dem aktuellen Stand der Technik zu erfüllen sowie eine separate Behandlung aus Mischsystem zu ermöglichen.

5.5.1 Kulissentauchwand

Die bestehenden Tauchwand mit einem horizontalen Abstand von 0,20 m erfüllt die Anforderungen nach DWA-A 111 bezüglich des horizontalen Abstands.

Die bestehende Tauchwand wird auf einer Höhe von 450,55 mNN abgebrochen und einen neue Kulissentauchwand installiert.

Die neue Kulissentauchwand wird vor die bestehende Schwelle montiert. Die Überfallhöhe wird dadurch nicht verändert.

Bei der Kulissentauchwand handelt es sich um ein flexibles Baukastensystem für einen effektiven Rückhaltung von Schwimmstoffen. Die aufwärtsgeneigten Lamellen mit kulissenförmiger Anordnung verringern den Absaugeffekt. Die Konstruktion wird mittels Wandbefestigung und mittels Konsolen an der bestehenden Beton-Überlaufschwelle fixiert und in Edelstahl ausgeführt. Die Überfallhöhe (Schwellenhöhe) bleibt unberührt und ändert sich nicht.

Bei einer Überfallmenge für ein 1-jähriges Ereignis ($Q_{B\ddot{U}(n=1)}$ = 608 l/s) ergibt sich eine Überfallhöhe von 0.32 m.

5.5.2 Reinigungseinrichtung

Derzeit erfolgt eine manuelle Reinigung des Beckens. Bisher sind keine Betriebsprobleme und ein vermehrter Abtrag von Schmutzstoffen in das Gewässer bekannt. Dies ist nach Umstellung der Drosseleinrichtung weiter zu beobachten. Falls hier ein verstärkter Austrag festgestellt werden sollte sind hier entsprechende Gegenmaßnahmen zu treffen.

Aufgrund der geringen einzustellenden Abflussleistung der Drossel kann es vermehrt zu Verlegungen der Drossel kommen. Dies wird im laufenden Betrieb geprüft. Sollte es verstärkt zu Betriebsproblemen und einem Erhöhten Stoffaustrag kommen, ist eine Reinigungseinrichtung nachzurüsten.

5.5.3 Messung des Entlastungsabflusses

Die Messung des Entlastungsabflusses kann durch Erfassung der Einstauhöhe im RÜB über eine Radar-Sonde erfolgen. Alternativ kann die kostenintensivere Ultraschall-Durchflussmessung über eine Ultraschallsonde an dem Kanalboden des Entlastungskanals (DN1000 vor Trennbauwerk) installiert werden.

Beide Arten von Durchflussmessungen weise eine Ungenauigkeit auf. Diese liegt bei der genaueren Ultraschallmessung bei ca. 5 %, bei der Radarmessung über den Füllstand bei 15-20 %. Vorteil einer Radar-Sonde ist neben dem Kosten die Erfassung des Überstaus des RÜB bei extremen Starkregenereignissen.

Im Hinblick auf die Verbesserung des Istzustands wird eine Radarsonde zur Wasserstandserfassung im RÜB. Die Datenübertragung kann über Mobile Daten erfolgen. Da derzeit kein Stromanschluss vorhanden ist, ist ein System mit Batterie geplant.

Die Art der Durchflussmessung ist im Rahmen der Genehmigungsplanung mit den WWA Ansbach und der Gemeinde abzustimmen.

Die Datenübertragung der Messeinheit soll ebenfalls in das bestehende Prozessleitsystem Flow-Chief integriert werden.

5.5.4 Drosselschacht

Die bestehende Drosseleinrichtung im vorhanden Drosselbauwerk muss ertüchtigt werden. Hierzu ist geplant mit dem Hersteller der Drosseleinrichtung einen Termin zu vereinbaren. Anhand der Begutachtung wird entschieden, wie die Drossel an den benötigten Drosselabfluss angepasst werden kann. Voraussichtlich erfolgt die Anpassung innerhalb des Drosselkastens.

Aufgrund des geringen Drosselabflusses kann es zu Vermehrter Verlegung bei Mischwasser führen. Die Drossel wurde mit einer automatischen Einrichtung (mechanisch) zur Beseitigung von Verlegungen ausgerüstet. Es kann aber dennoch nicht ausgeschlossen werden, dass diese Verlegungen öfters vorkommen. Dies ist durch das Betriebspersonal zu prüfen.

5.5.5 Entlastungsgerinne / -kanal

Das bestehende Entlastungkanal (DN 500; IS= 2%) hat eine Vollfüllleistung von 617 l/s. Der Zufluss bei einem Regenereignis r15,1 = 608 l/s. Der Entlastungskanal ist ausreichend groß dimensioniert.

5.5.6 Einleitstellen

Die Lage der Einleitestelle wird nicht geändert.

Die Koordinaten der Einleitestelle sind:

X = 590037

Y= 5470193

6 AUSWIRKUNGEN DES VORHABENS

Durch den Umbau des bestehenden Regenrückhaltebeckens gemäß den aktuellen Vorschriften wird der Schutz des Gewässers in qualitativer und hydraulischer Hinsicht gewährleistet. Durch die Auslegung der Anlage auf einen Prognose Zustand wird einem Wachstumspotential von Wachsenberg Rechnung getragen und der zuverlässige Betrieb der Abwasseranlagen auch in der Zukunft gewährleistet.

7 DURCHFÜHRUNG DES VORHABENS

Vorbehaltlich der Zustimmung durch die Gemeinde Neusitz ist der nachfolgend aufgeführte Terminablauf denkbar. Bei Verlegung des Starttermins werden die Einzelfristen diesem angepasst.

Die vorgesehenen Maßnahmen könnten wie folgt verwirklicht werden:

Abgabe Wasserrechtliche Genehmigung
 Dezember 2024

Prüfphase WWA Ansbach / Erteilung der gehobenen Erlaubnis
 6 Monate

Ausführungsplanung
 4 Monate

• Vergabeverfahren bis Beauftragung 3 Monate

Bauausführung
 5 Monate (Berücksichtigung Wintermonate)

Inbetriebnahme ab Juni 2026

8 RECHTSVERHÄLTNISSE / ANTRAG

Auf der Grundlage der vorliegenden Genehmigungsplanung wird von der Gemeinde Neusitz um die Erteilung der gehobenen Erlaubnis nach § 15 WHG zur Benutzung des Brunnentalgrabens (Gewässer III. Ordnung) durch Einleiten von gesammeltem Niederschlagswasser bzw. vorentlastetem Mischwasser aus dem RÜB Wachsenberg beim Landratsamt Ansbach ersucht.

9 WARTUNG UND VERWALTUNG

Betrieb.	Wartung u	und Verwaltı	ng der A	Abwasseranlag	en obliegt	der Ge	meinde Ne	eusitz.

Aufgestellt:

CDM Smith SE 12.12.2024

i.V.

Johannes Bechstein, M.Eng.

Projektmanager

Felix Übelmesser, B.Eng. Projektingenieur

F Chelmasse_

i.A.

i.A.

Alexander Thar, M.Eng.

Projektingenieur

Antragsteller:

Gemeinde Neusitz

Manuel Döhler, 1. Bürgermeister

Verteiler

Proj.-Nr.: **295809**, Bericht-Nr. 01: Wasserrechtsverfahren 20240412_WR-Neusitz RÜB Wachsenberg Erläuterung

Seite 18/18

ANLAGE 1 FOTODOKUMENTATION STATUS QUO

Foto Nr. 1: Zulauf RÜB und vorhandene Tauchwand inkl Beckenüberlaufschwelle

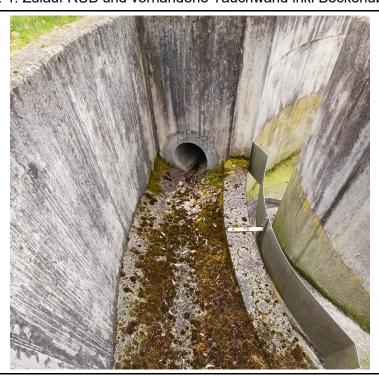


Foto Nr. 2: Entlastungsrinne BÜ – Richtung RBF

Gemeinde Neusitz Im Dorf 14 91616 Neusitz	Projekt-Nr.: 295809	CDM Smith
Ertüchtigung der AW-Behandlungsanlage	Wasserrechtliche	Anlage-Nr. 1
Bestandsaufnahme des Status Quo	Genehmigung	Seite 1/4

Foto Nr. 3: RÜB Wachsenberg

Foto Nr. 4: mech. Drosseleinrichtung

Gemeinde Neusitz Im Dorf 14 91616 Neusitz	Projekt-Nr.: 295809	CDM Smith
Ertüchtigung der AW-Behandlungsanlage	Wasserrechtliche	Anlage-Nr. 1
Bestandsaufnahme des Status Quo	Genehmigung	Seite 2/4

Foto Nr. 5: Zulauf Bodenfitleranlage

Foto Nr. 6: Bodenfilteranlage

Gemeinde Neusitz Im Dorf 14 91616 Neusitz	Projekt-Nr.: 295809	CDM Smith
Ertüchtigung der AW-Behandlungsanlage	Wasserrechtliche	Anlage-Nr. 1
Bestandsaufnahme des Status Quo	Genehmigung	Seite 3/4

Foto Nr. 7: Notüberlauf Bodenfilteranlage

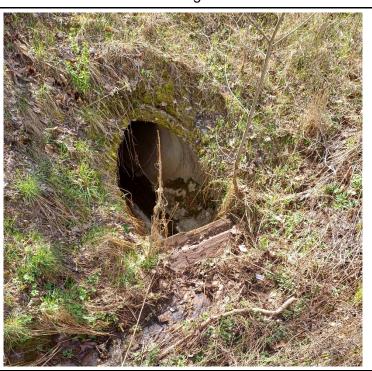


Foto Nr. 8: Teich – Einleitungsstelle in Brunnentalgraben

Gemeinde Neusitz Im Dorf 14 91616 Neusitz	Projekt-Nr.: 295809	CDM Smith
Ertüchtigung der AW-Behandlungsanlage	Wasserrechtliche	Anlage-Nr. 1
Bestandsaufnahme des Status Quo	Genehmigung	Seite 4/4

ANLAGE 2 EINZUGSGEBIETSDATEN

	-		Allgemeines							asser	CSB Konz. im Schmutz- wasser- abfluss	Fremd- wasser	Fremd- wasser				Stündl. Spitzen- abfluss		CSB Konzt im Q _{T,aM}		Regen- abfluss in Trenn- gebieten	Mischsystem					
Nr.	Teileinzugsgebiet	Sys.	Anmerk ung	EW	ED	spz. Was. verbr.	EWG	jährl. Arbeits- tage	$Q_{S,aM}$	Q _{S,aM}	C _x	FWA	$Q_{F,aM}$	$Q_{T,aM}$	$Q_{T,aM}$	Std	Q_{SX}	Q_{tx}	C _t		Q _{rT24}	A _{EK}	$A_{e,B,a}$	VG	tf	NG	AEKxNG
						I/E*d		d/a	m³/a	l/s	mg/l	%	l/s	m³/a	l/s	h	l/s	l/s	mg/l	kg/d	l/s	ha	ha	-	min	-	-
	RÜB Wachsenberg Häusliches Mischsystem																										
	FB 1	MS	FB1	13	5	120,8			575,91	0,02	601	37%	0,01	914,15	0,03	10	0,04	0,05	378,73	0,95		2,65	0,77	0,29		2	5,30
	FB 2	MS	FB2	8	5	120,8			347,72	0,01	601	37%	0,01	551,94	0,02	10	0,03	0,03	378,73	0,57		1,60	0,64	0,40		2	3,20
	FB 3	MS	FB3	59	5	120,8			2607,91	0,08	601	37%	0,05	4139,54	0,13	10	0,20	0,25	378,73	4,30		12,00	0,60	0,05		2	24,00
	FB 4	MS	FB4	4	5	120,8			195,59	0,01	601	37%	0,00	310,47	0,01	10	0,01	0,02	378,73	0,32		0,90	0,26	0,29		2	1,80
	FB 5	MS	FB5	14	5	120,8			630,25	0,02	601	37%	0,01	1000,39	0,03	10	0,05	0,06	378,73	1,04		2,90	0,44	0,15		2	5,80
	FB 6	MS	FB6	7	5	120,8			304,26	0,01	601	37%	0,01	482,95	0,02	10	0,02	0,03	378,73			1,40	0,42	0,30		2	2,80
	FB 7	MS	FB7	16	5	120,8			717,18	0,02	601	37%	0,01	1138,37	0,04	10	0,05	0,07	378,73	1,18		3,30	1,82	0,55		2	6,60
	Häuslich Trennsystem				_																						10.70
	Zwischensumme Häuslich			122	5				5378,82	0,17		0,37	0,10	8537,80	0,27		0,41	0,51	378,73	8,86	0,00	24,75	4,94	0,20	5,0	2	49,50
	Gewerblich Mischsystem Gewerblich Trennsystem																										
	Zwischensumme Gewerblich			0	0		0,00		0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0	0,00
	Einzeleinleiter				<u> </u>		0,00		0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			0,00
	Zwischensumme Einzeleinleiter			0	0		0,00		0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00						
	Gesamt RÜB Wachsenberg EW			122	5		0,00		5.378,82	0,17		0,37	0,10	8537,80	0,27		0,41	0,51	378,73	8,86		24,75	4,94	0,20		2	49,50
	Gesamt Häuslich			122	5	120,8	0,00		5378,82	0,17		0,37	0,10	8537,80	0,27		0,41	0,51	378,73	8,86	0,00	24,75	4,94	0,20		2	49,50
	Gesamt Gewerblich			0	0	.20,0	0,00		0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00	0,00		0	0,00
	Gesamt Einzeleinleiter			0	0		0,00		0,00	0,00		0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0	0,00
	Gesamt			122	5		0,00		5378,82	0,17		0,37	0,10	8537,80	0,27		0,41	0,51		8,86	1	24,75	4,94	0,20		2	49,50

ANLAGE 3 AUSWERTUNG SCHMUTZFRACHTBERECHNUNG

Auswertung Schmutzfrachtberechnung der Stadt Rothenburg ob der Tauber:

Zentralbecken wurde ieweils mit erforderlichen Mindestspeichervolumina berechnet!

Zentralbeckenberechnung Prognose 2015:		
Berechnung rev3c		
Volumen = 3542 m ³		
Frachten Bauwerke RUB.1 BÜ	CSB =	2.589 kg/a
Frachten Bauwerke RUB.1 KÜ	CSB =	35.967 kg/a
einzuhaltende entlastete Gesamtschmutzfracht	S _{FEo} =	38.556 kg/a
erhöhte Anforderungen 85% von S _{FEo}	S _{FE0, 85%} =	32.773 kg/a
Zentralbeckenberechnung Prognose 2021:		
Berechnung rev5c		
Volumen = 3778 m ³		
Frachten Bauwerke RUB.1 BÜ	CSB =	3.427 kg/a
Frachten Bauwerke RUB.1 KÜ	CSB =	47.637 kg/a
einzuhaltende entlastete Gesamtschmutzfracht	S _{FEo} =	51.064 kg/a
erhöhte Anforderungen 85% von S _{FEo}	S _{FE0, 85%} =	43.404 kg/a
Zuwachs in der Zentralbeckenberechnung:		
Differenz	S _{FE0, 85%} =	10.632 kg/a

Einzelbeckenberechnung 2015		RÜB	RÜB			
(Einzugsgebiet Neusitz und nachgeschaltete Becken)		Neusitz	Wachsen-	RUB6	RUB1	SUMME
		Neusitz	berg			
$V = 448 \text{ m}^3$		kg/a	kg/a	kg/a	kg/a	kg/a
entlastete Gesamtschmutzfracht RÜB Neusitz	S _{FE} =	3608	0	6550	2	10160
Einzelbeckenberechnung 2021						
$V = 879 \text{ m}^3$						
entlastete Gesamtschmutzfracht RÜB Neusitz	S _{FE} =	7062	997	6688	2	14749
V = 600 m ³						
entlastete Gesamtschmutzfracht RÜB Neusitz	S _{FE} =	7714	997	6688	2	15401
$V = 475 \text{ m}^3$						
entlastete Gesamtschmutzfracht RÜB Neusitz	S _{FE} =	8103	997	6688	2	15790

Unterschied aus Flächenzuwachs RÜB Neusitz in Einzelbeckenberechnung:	SUMME
	kg/a
Differenz 2015 zu 2021 V = 879 m³	4589
Differenz 2015 zu 2021 V = 600 m ³	5241
Differenz 2015 zu 2021 V = 475 m ³	5630

Fazit:

Die Erweiterung der Ansätze der Flächen für die Gemeinde Neusitz erhöht die einzuhaltende entlastete Gesamtschmutzfracht im Prognose-Zustand im Einzugsgebiet der Kläranlage Rothenburg o.d.T. um ca. 10.000 kg/a. Das Becken Neusitz hat einen Zuwachs der entlasteten Gesamtschmutzfracht von 5630 kg/a. Damit wäre das Bestandsvolumen von V = 475m³ ausreichend, um den Nachweis einzuhalten. Da die einzuhaltende Gesamtschmutzfracht um mehr als die entlastete Gesamtschmutzfracht gestiegen ist.

Anlage 3.1 Ergebnisse

Zentralbeckenberechnung
nach ATV DVWK-A 128

Projekt-Nummer: Auftraggeber: 2 Stadt Rothenburg o.d.T.

b-a-u ing.ges.mbH Rothenburg o.d.T Prognosezustand peschlossenes Siedlungsgebiet

	9 9			
Entwurfsverfasser				
Name	b-a-u ing.ges.mbH			
Strasse	Lindberghstr. 5			
PLZ	82178			
Ort	Puchheim			
Telefon	089-215533-100			
Fax	089-215533100			
e-mail	lezius@b-a-u-ingeni	eure.de		
Verwaltungsdaten				
Nummer	2			
Name	geschlossenes Sied	lungsgebiet		
Variante	Prognosezustand			
Auftraggeber	Stadt Rothenburg o.	d.T.		
Bearbeitungsdatum	25.02.1998			
Hydrologie und Hydraulik				
mittlere Jahresniederschlagshöhe	HNa	725	mm/a	
Jahresabflußbeiwert	PSIa	0.70	=	
15-Minuten-Regenspende (n=1)	r15,1	109,60	l/(s*ha)	
maßgebliche Regendauer	Tm	10	min	
Zeitbeiwert	PHIm	1,00	-	
Summe erforderl. Speichervolumen	Sum V	3.777,85	m^3	
'		,		
Abflussberechnung nach Zeitbeiwertverfahren		ja		
Trockenwetterabfluss	Tagesmittel			
Einwohnerzahl	EZ	23.263	E	
häuslicher Schmutzwasserabfluss	Qh24	35,56	l/s	
gewerblicher Schmutzwasserabfluss	Qg24	0,00	l/s	
Schmutzwasserabfluss	Qs24	35,56	l/s	
Fremdwasserabfluss	Qf24	11,39	l/s	
Trockenwetterabfluss	Qt24	46,95	l/s	
	Tagesspitze			
häuslicher Schmutzwasserabfluss	Qhx	69,67	l/s	
gewerblicher Schmutzwasserabfluss	Qgx	0,00	l/s	
Schmutzwasserabfluss	Qsx	69,67	l/s	
Trockenwetterabfluss	Qtx	81,06	l/s	
Regenwetterabfluss				
unabgeminderter Regenabfluss	Qr15	0.00	l/s	
abgeminderter Regenabfluss	Qr	0,00	l/s	
unabminderbarar Regenabfluss	uQr	30.017,38	I/s	
längste Fliesszeit	LTf	150,00	min	
maßgebliche Fliesszeit	Tf	0,00	min	
Zeitbeiwert	PHI	1,00	-	
Regenabfluss aus Trennsystem	QrT24	16,39	l/s	
Einzugsgebiet				
Einzugsgebietsfläche	AE	0.00	ha	
LIIIZugogenietoliacije	Sum AE	524,29	ha	
undurchlässige Fläche	Au	0,00	ha	
andaromassiye i laone	Sum Au	1.230,12	ha	
mittlere Geländeneigungsgruppe	NGm	2,29	-	
Statistik	140111	2,20		
		A A		
Gesamtzahl der hydrologischen Elemente Preschweisensa Stellungsgebiet 172-07-08-300-1405-185		25	02.1998	Element 1 von 5
Tizenz-Nr 036-300-1405-185		-ψ.		Elomont 1 von 0

13

Abflußkonzentration

2.000

ma/l

b-a-u ing.ges.mbH Rothenburg o.d.T Projekt-Nummer: Prognosezustand Auftraggeber: Stadt Rothenburg o.d.T. Regenüberlaufbecken RUB.1 Zulauf Ablauf Abschlag Trockenwetterabfluss **Tagesmittel** Einwohnerzahl ΕZ 23.263 23.263 0 Ε Qh24 0.00 I/s häuslicher Schmutzwasserabfluss 35,56 35,56 gewerblicher Schmutzwasserabfluss Qg24 0.00 0,00 0,00 I/s Schmutzwasserabfluss Qs24 35,56 35,56 0.00 I/s Qf24 Fremdwasserabfluss 11,39 11,39 0,00 l/s Trockenwetterabfluss Qt24 46,95 46,95 0,00 I/s **Tagesspitze** häuslicher Schmutzwasserabfluss Qhx 69,67 69,67 0,00 I/s gewerblicher Schmutzwasserabfluss Qgx 0.00 0.00 0.00 I/s Schmutzwasserabfluss Qsx 69,67 69,67 0,00 l/s Trockenwetterabfluss Qtx 81.06 81,06 0,00 I/s Zulauf Ablauf Abschlag Regenwetterabfluss unabgeminderter Regenabfluss Qr15 30.017.38 0.00 0.00 I/s abgeminderter Regenabfluss Ωr 30.017.38 0,00 0.00 I/s unabminderbarar Regenabfluss uQr 0.00 136.65 29.880.73 I/s längste Fliesszeit 1 Tf 124.00 124.00 0.00 min maßgebliche Fliesszeit Τf 124.00 0.00 0.00 min Zeitbeiwert PHI 1.00 1.00 1.00 Regenabfluss aus Trennsystem QrT24 16.39 16.39 0.00 I/s Zulauf Ablauf Abschlag Einzugsgebiet Einzugsgebietsfläche ΑE 524.29 0,00 0.00 ha Sum AE 524.29 524.29 0.00 ha 0.00 undurchlässige Fläche Au 239.18 0.00 ha 239.18 Sum Au 239.18 0.00 ha mittlere Geländeneigungsgruppe NGm 2.29 2.29 0.00 Nachweis A128 Drosselabfluß QD 200,00 I/s Auslastungswert Kläranlage 2,71 n Regenabfluss 24-h-Mittel Qr24 I/(s*ha) Einflusswerte 136,65 Regenabflußspende I/(s*ha) Jahresniederschlag -0.09 0.57 ah ar Trockenwetter-Abflußspende qt 0,20 I/(s*ha) TW-Konzentration ac 1,00 mittl. Regenabfluss bei Entlastung Ore 1.022,02 I/s Kanalablagerungen 0.38 aa mittleres Mischverhältnis xa-Wert Kanalablagerungen m 22,12 13,90 ха erforderliches Mischverhältnis 7,00 Fließzeit-Abminderung 0,89 af m erf zulässige Entlastungsrate e0 56,37 % CSB-Konzentrationen spezifisches Speichervolumen VS 15,79 m^3/ha Trockenwetter ct 518,89 mg/l erforderl. Speichervolumen \bigvee 107,00 3.777,85 m^3 Regenwasser mg/l cr Summe erforderl. Speichervolumen Sum V 3.777,85 m^3 Bemessung cb 768,88 mg/l vorhandenes Speichervolumen VOL 3.778,00 m³ Entlastung 135,63 mg/l ce max. Klärüberlauf maxQKÜ 3.387,00 I/s kritischer Regenabfluss Qrkrit 3.587,71 I/s kritischer Mischwasserabfluss Qkrit 3.634,66 Lage Rechtswert RW 0.00 HW 0,00 Hochwert Gelände Gel 0.00 mNN Strasse Frachten und Konzentrationen Regenabflußspende grab 0.5 128 I/(s*ha) Mischwasserzufluß QM 46,95 302.53 541.71 1.976,79 3.890.24 7.717.13 30.678,47 I/s BSB5 14.225 24.505 Zuflußfracht 21.866 29.784 40.341 61.455 103.682 188.138 357.049 694.871 mg/s NH4-N 2.525 3.275 3.935 5.255 7.894 13.172 23.729 44.843 87.071 171.526 mg/s AFS 17.782 47.590 68.704 195.387 364.298 702.120 1.377.764 2.729.052 5.431.627 mg/s Billingkonzentenhoa M3 BSB5 302.96 119.53 81.00 25.94281998 39.55 31.09 26.65 24.38 23,23 Elements 3 mundin 5 Lizenz-Nr. 036-300-14054-1185 53,78 17.90 9.70 7.74 6.66 6,10 5,81 5,66 5,59 mg/l

204.78

191.54

184.29

180.48

177.55

ma/l

260.14

b-a-u ing.ges.mbH Rothenburg o.d.T Projekt-Nummer: Prognosezustand Auftraggeber: Stadt Rothenburg o.d.T. nicht konfiguriert Einleitung EST.1 Hydrologische Kenndaten natürliches Einzugsgebiet AEo 195.00 km² Quelle nein Niedrigwasserspende MNa 1,75 I/(s*km^2) Quellauf nein pot. nat. Hochwasserspende I/(s*km^2) Hq1 pnat 179,48 naturnahes Temporärgewässer nein mittl. Niedrigwasserabfluß MNQ 341,25 I/s organisches Gewässer nein pot. nat. Hochwasserabfluß HQ1 pnat 34.998,60 I/s im Einflussbereich staugeregelt nein Quellabstand LQuell 5.000,00 m Laichgewässer für Großsalmoniden nein Mittelgebirgsgewässer Hydraulische Kenndaten Sohle oben SOLO 0.00 mNN Abflußquerschnitt A voll 22 00 m^2 SOLU Sohle unten 0.00 mNN Abflußleistung Q voll 0 I/s 1 1.500.00 mNN Fließgeschwindigkeit v voll 0.00 m/s Länge Sohlaefälle IS 0/00 Fließtiefe (Begehung) hMNQ 0.30 0.00 m Sohlrauhigkeit kst 25.00 m[^](1/3)/s Fließgeschw. (Begehung) vMNQ 0.20 m/s bS Sohlbreite Böschungsneigung 5.00 m n 0.13 1: mittl. Böschungshöhe hB 4.00 m Spiegelbreite bei hB **BWSP** 6.00 m ungedrosselter Abfluss QKÜ Speichervolumen VOL 0 m^3 max. Abfluss Klärüberlauf 0 I/s Belastungsgrößen und Güte Summe der undurchlässigen Flächen Sum Au M3 234.23 ha Summe der Einleitungsabflüsse Sum QE1 30.080.73 I/s Sauerstoff-Anfangsdefizit % 1.82 Do °C Wassertemperatur 18.00 (sommerliches Maximum) Vorbelastung BSB5 5.00 ma/l Gewässer-Güteklasse NH4-N 0,30 mg/l Struktur-Güteklasse AFS 15,00 mg/l Eutrophierung in Abschnitten pH-Wert 7.50 Alkalinität 5.00 mmol/l Wiederbesiedlungspotenzial nicht erhoben Lage Rechtswert RW 0.00 Hochwert HW 0,00 Gelände Gel 0.00 mNN Strasse Abfluß im Gewässer Regenabflußspende 128 grab 0 0,5 16 32 64 I/(s*ha) Einleitungsabfluß QΕ 46.95 302.53 541.71 3.890.24 30.678.47 I/s Einleitungsfrachten 235 915 9.305 19.788 33.431 56.237 99.352 184.262 353.403 691.341 mg/s NH4-N 235 915 2.334 4.315 7.346 12.840 23.509 44.681 86.938 171.408 mq/s AFS 470 1.829 25.284 71.975 329,440 668.023 1.344.057 2.695.542 5.398.217 mg/s Gewässerabfluß Q 524 644 883 1.361 2.318 4.231 8.058 15.712 31.020 l/s Gewässerfracht 1.941 2.621 21.494 35.138 57.943 101.058 185.968 355.109 693.047 mg/s NH4-N 337 2.436 4.417 7.449 12.942 23.612 44.783 87.040 ma/s AFS 5.588 6.948 30.403 77.094 164.197 334.559 673.142 1.349.176 2.700.661 5.403.336 mg/s Gewässerkonzentr 5,00 5,00 17,10 24,34 25,81 25,00 23,88 23,08 22,60 22,34 mg/l NH4-N 0,87 1,94 3,78 5,00 5,47 5,58 5,58 5,56 5,54 5,53 mg/l AFS 120.62 144.33 14.40 13.26 47.23 87.31 159.08 167,43 171.88 174.19 mg/l pH-Wert 7.45 7,36 7,35 7.36 7.37 7.38 7,39 7,39 7.40 7.40 Alkalinität 4,64 3,95 3,74 3,54 3,35 3,20 3,11 3,06 3,03 3,02 mmol/l Fließtiefe 0.00 hG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 m Durchflußquerschnitt AG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 m^2 Fließgeschwindigkeit vG 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 m/s 0.00 0.00 0.00 mittlere Fließtiefe 0.00 0.00 0.00 0.00 hm m 0.00 0.00 0.00 Wiederbelüftungsrate K2 0.00 0.00 0.00 0.00 0.00 0.00 h^-1 tkrit 0,00 0,00 0,00 0,00 0,00 00,0 0,00 0,00 BWK VereNa M3 .02.1998 25 Element 4 von Lizenz-Nr. 036-300-1405-185 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 ı,ŏ∠ mg/ı

min. Sauerstoffgehalt

ckrit

7.28

7.28

7.28

7.28

7.28

7.28

7.28

7.28

7.28

7.28

ma/l

b-a-u ing.ges.mbH Rothenburg o.d.T Prognosezustand Projekt-Nummer: Auftraggeber: Stadt Rothenburg o.d.T. nicht konfiguriert Einleitung EST.1 Hydraulische Belastung
HQ2pnat / HQ1pnat - 1
Summe zul. Einleitungsabflüsse
Summe vorh. Einleitungsabflüsse
Gewässerabfluß 0,51 -18.269,68 l/s QE zul 30.080,73 l/s 64.658,94 l/s Sum QE1 Q Gew = 1,85 * HQ1 p nat Wiederbesiedlungspotenzial nicht erhoben Überlaufhäufigkeit n = 0.5 / a

b-a-u ing.ges.mbH Rothenburg o.d.T Projekt-Nummer: Prognosezustand Auftraggeber: Stadt Rothenburg o.d.T. Wischwassernetz KEM.1 Zulauf Ablauf Element Trockenwetterabfluss **Tagesmittel** Einwohnerzahl ΕZ 0 880 880 Ε Qh24 häuslicher Schmutzwasserabfluss 0,00 1,38 1,38 I/s gewerblicher Schmutzwasserabfluss Qg24 0,00 0,00 0.00 I/s Qs24 Schmutzwasserabfluss 0,00 1,38 1,38 I/s Fremdwasserabfluss Qf24 0,08 0,00 0.08 l/s Trockenwetterabfluss Qt24 0,00 1,45 1,45 l/s **Tagesspitze** häuslicher Schmutzwasserabfluss 2,54 Qhx 0,00 2,54 I/s 0,00 gewerblicher Schmutzwasserabfluss Qgx 0,00 0.00 I/s Schmutzwasserabfluss Qsx 0,00 2,54 2,54 l/s Trockenwetterabfluss 0.00 Qtx 2,62 2,62 I/s Zulauf Ablauf Element Regenwetterabfluss unabgeminderter Regenabfluss 0.00 Qr15 227.60 227.60 I/s abgeminderter Regenabfluss Qr 0.00 227.60 227 60 I/s unabminderbarar Regenabfluss uQr 0.00 0.00 0.00 I/s längste Fliesszeit 5.00 1 Tf 0.00 5.00 min maßgebliche Fliesszeit Τf 0.00 5.00 5.00 min Zeitbeiwert PHI 0.00 1,00 Regenabfluss aus Trennsystem QrT24 0.00 0.00 0.00 I/s Zulauf Ablauf Element Einzugsgebiet 4,49 Einzugsgebietsfläche ΑE 0.00 4.49 ha Sum AE 0.00 4.49 4.49 ha undurchlässige Fläche Au 0.00 1.57 1.57 ha Sum Au 0.00 1.57 1.57 ha mittlere Geländeneigungsgruppe NGm 0.00 3.00 3.00 Abflußbeiwert PSI 0.46 Ablagerungsbeiwert aa 0,00 0,00 Trockenwetteranfall Einwohnerdichte ED 196.00 E/ha spezifischer Wasserverbrauch WS 135,00 I/(E*d) Stundenansatz 13,00 h Х gewerbliche Schmutzwasserspende qg 0,00 I/(s*ha) Arbeitsstunden / Tag h/d 8,00 aq Produktionstage / Jahr 220,00 bg d/a Fremdwasserspende qf 0,05 I/(s*ha) Schmutzwasser-Ganglinie SWGL 2 _ Fremdwasser-Ganglinie 0 **FWGL** Abfluss-Belastung ch cr(vN) cr(dN) cg BSB5 400,00 400,00 20,00 10,00 mg/l Nges 71,00 71,00 5,00 2,00 mg/l AFS 500,00 500,00 160,00 00,08 mg/l CSB 700,00 600,00 107,00 mg/l pH-Wert 7,40 7,40 7,40 3.00 3,00 Alkalinität 3,00 mmol/l Lage Rechtswert RW 0.00 Hochwert HW 0.00 Gelände Gel 0.00 mNN Strasse Frachten und Konzentrationen Regenabflußspende 16 32 64 128 l/(s*ha) grab 0,5 0.00 0.00 25.02.1998 0.00 0.00 0.00 0.00 0.00 0.00 BWK VereNa M3 Element 5 von 5 0 0 0 0 0 0 0 Lizenz-Nr. 036-300-1405-185-

0

0

0

0 mg/s

0

b-a-u ing.ges	s.mbH	Lindberghst	r. 5		82178	Puchheim			Telefon: 089-215533-10	00 Fax: 0	89-21553310
Ergebnisse Hydrolog	ie Einzugsgebiete	Projekt-Bez Projekt-Nun	_	enburg o.d.T				kt-Variante: aggeber:	Prognosezustand Stadt Rothenburg o.d.T	-	
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]
1997	KEM.Bettenfeld	KEM	0,00	0,00	0,00	einzeln kumuliert	0 0	0	0 0	0	0
1997	KEM.Gebsattel	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0 0	0	0
1997	KES.663	KES	0,00	0,00	0,00	einzeln kumuliert	0	0	0 0	0	0
1997	KEM.608	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	(
1997	Wachsenberg	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	(
1997	KEM.Neusitz	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	0
1997	<u>KEM.6</u>	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	(
1997	KES.652-661	KES	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	0
1997	KEM.606	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	(
1997	<u>KES.5</u>	KES	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	(
997	<u>KEM.5</u>	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	(

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

Detaillierter Nachweis

Erstellungszeitpunkt: 12.04.2021 16:41:50

Seite

b-a-u ing.ges	s.mbH	Lindberghs	tr. 5		82178	3 Puchheim			Telefon: 089-215533-1	00 Fax: 0)89-21553310
Ergebnisse Hydrolog i	e Einzugsgebiete	Projekt-Bez Projekt-Nu		enburg o.d.T					Prognosezustand Stadt Rothenburg o.d.	Т.	
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]
1997	<u>Leuzenbronn</u>	KEM	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
1997	KEM.4	KEM	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
997	KES.3	KES	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
1997	KEM.3	KEM	0,00	0,00	0,00	einzeln	0	0	0	0	C
						kumuliert	0	0	0	0	0
1997	KES.2	KES	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
1997	KEM.2	KEM	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
997	KES.6	KES	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
997	Westl-OT	KES	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
1997	<u>KEM.1</u>	KEM	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
997	<u>Gesamtsystem</u>	***	0,00	0,00	0,00	einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
998	KEM.Bettenfeld	KEM	795,05	422,15	0,53	einzeln	39.189	9.954	9.048	20.187	4.222
						kumuliert	39.189	9.954	9.048	20.187	0

Erstellungszeitpunkt: 12.04.2021 16:41:50

Seite

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

Detaillierter Nachweis

b-a-u ing.ges	s.mbH	Lindberghs	str. 5		82178	Puchheim			Telefon: 089-21553	33-100 Fax: 0)89-21553310
Ergebnisse Hydrolog i	ie Einzugsgebiete	Projekt-Be Projekt-Nu	-	enburg o.d.T			-	ekt-Variante: raggeber:	Prognosezustand Stadt Rothenburg	o.d.T.	
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]
1998	KEM.Gebsattel	KEM	795,05	419,83	0,53	einzeln	229.606	84.370	45.121	100.115	4.198
						kumuliert	229.606	84.370	45.121	100.115	C
1998	KES.663	KES	795,05	0,00	0,00	einzeln	10.111	7.588	2.523	0	C
						kumuliert	10.111	7.588	2.523	0	C
1998	KEM.608	KEM	795,05	419,83	0,53	einzeln	168.031	72.434	22.087	73.510	4.198
						kumuliert	178.143	80.022	24.610	73.510	C
1998	Wachsenberg	KEM	795,05	419,83	0,53	einzeln	29.247	5.344	3.122	20.782	4.198
						kumuliert	29.247	5.344	3.122	20.782	C
1998	KEM.Neusitz	KEM	795,05	423,89	0,53	einzeln	241.942	75.248	21.590	145.103	4.239
						kumuliert	271.189	80.592	24.712	165.885	C
1998	KEM.6	KEM	795,05	419,83	0,53	einzeln	383.896	135.358	57.423	191.116	4.198
						kumuliert	562.039	215.381	82.033	264.626	C
1998	KES.652-661	KES	795,05	0,00	0,00	einzeln	21.750	13.551	8.199	0	C
						kumuliert	21.750	13.551	8.199	0	C
1998	KEM.606	KEM	795,05	419,83	0,53	einzeln	20.600	3.351	3.172	14.077	4.198
						kumuliert	42.350	16.901	11.371	14.077	C
1998	<u>KES.5</u>	KES	795,05	0,00	0,00	einzeln	1.636	690	946	0	C
						kumuliert	1.636	690	946	0	C
1998	<u>KEM.5</u>	KEM	795,05	421,20	0,53	einzeln	462.815	242.925	40.331	179.559	4.212
						kumuliert	464.451	243.615	41.277	179.559	C
1998	<u>Leuzenbronn</u>	KEM	795,05	419,83	0,53	einzeln	30.722	10.890	6.834	12.998	4.198
						kumuliert	30.722	10.890	6.834	12.998	C

Seite

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

b-a-u ing.ges	s.mbH	Lindberghs	str. 5		82178	Puchheim			Telefon: 089-2155	33-100 Fax: 0)89-21553310
Ergebnisse Hydrolog i	ie Einzugsgebiete	Projekt-Be Projekt-Nu	-	enburg o.d.T				ojekt-Variante: ftraggeber:	Prognosezustand Stadt Rothenburg		
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]
1998	<u>KEM.4</u>	KEM	795,05	422,15	0,53	einzeln	174.589	108.158	8.635	57.796	4.222
			,	, -	-,	kumuliert	174.589	108.158	8.635	57.796	C
1998	KES.3	KES	795,05	0,00	0,00	einzeln	39.666	27.052	12.614	0	C
						kumuliert	39.666	27.052	12.614	0	C
1998	KEM.3	KEM	795,05	422,11	0,53	einzeln	272.531	108.306	37.785	126.439	4.221
						kumuliert	312.197	135.358	50.400	126.439	C
1998	KES.2	KES	795,05	0,00	0,00	einzeln	27.545	18.084	9.461	0	C
						kumuliert	27.545	18.084	9.461	0	C
1998	KEM.2	KEM	795,05	422,54	0,53	einzeln	145.548	68.492	17.715	59.341	4.225
						kumuliert	173.093	86.576	27.176	59.341	C
1998	KES.6	KES	795,05	0,00	0,00	einzeln	103.112	71.892	31.220	0	C
						kumuliert	103.112	71.892	31.220	0	C
1998	Westl-OT	KES	795,05	0,00	0,00	einzeln	33.408	14.487	18.921	0	C
						kumuliert	33.408	14.487	18.921	0	C
1998	<u>KEM.1</u>	KEM	795,05	424,67	0,53	einzeln	52.514	43.362	2.478	6.674	4.247
						kumuliert	52.514	43.362	2.478	6.674	C
1998	<u>Gesamtsystem</u>	***	0,00	0,00	0,00	einzeln	0	0	0	0	C
						kumuliert	2.488.459	1.121.536	359.227	1.007.696	4.213
1999	KEM.Bettenfeld	KEM	797,00	428,94	0,54	einzeln	39.514	9.954	9.048	20.512	4.289
						kumuliert	39.514	9.954	9.048	20.512	C
1999	KEM.Gebsattel	KEM	797,00	426,16	0,53	einzeln	231.116	84.370	45.121	101.625	4.262
						kumuliert	231.116	84.370	45.121	101.625	C

Seite

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

b-a-u ing.ges	s.mbH	Lindberghs	str. 5		82178	3 Puchheim			Telefon: 089-21553	33-100 Fax: 0	089-215533100
Ergebnisse Hydrolog i	ie Einzugsgebiete	Projekt-Be: Projekt-Nu	_	enburg o.d.T				jekt-Variante: traggeber:	Prognosezustand Stadt Rothenburg	o.d.T.	
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]		QR [cbm]	qr [cbm/ha]
1999	KES.663	KES	797,00	0,00	0,00	einzeln	10.111	7.588	2.523	0	0
						kumuliert	10.111	7.588	2.523	0	0
1999	KEM.608	KEM	797,00	426,16	0,53	einzeln	169.140	72.434	22.087	74.619	4.262
						kumuliert	179.252	80.022	24.610	74.619	0
1999	Wachsenberg	KEM	797,00	426,16	0,53	einzeln	29.561	5.344	3.122	21.095	4.262
						kumuliert	29.561	5.344	3.122	21.095	0
1999	KEM.Neusitz	KEM	797,00	430,99	0,54	einzeln	244.370	75.248	21.590	147.532	4.310
						kumuliert	273.931	80.592	24.712	168.627	0
999	KEM.6	KEM	797,00	426,16	0,53	einzeln	386.779	135.358	57.423	193.998	4.262
						kumuliert	566.031	215.381	82.033	268.618	0
1999	KES.652-661	KES	797,00	0,00	0,00	einzeln	21.750	13.551	8.199	0	0
						kumuliert	21.750	13.551	8.199	0	0
1999	KEM.606	KEM	797,00	426,16	0,53	einzeln	20.812	3.351	3.172	14.289	4.262
						kumuliert	42.562	16.901	11.371	14.289	0
1999	KES.5	KES	797,00	0,00	0,00	einzeln	1.636	690	946	0	0
						kumuliert	1.636	690	946	0	0
1999	<u>KEM.5</u>	KEM	797,00	427,81	0,54	einzeln	465.633	242.925	40.331	182.377	4.278
						kumuliert	467.269	243.615	41.277	182.377	0
1999	Leuzenbronn	KEM	797,00	426,16	0,53	einzeln	30.918	10.890	6.834	13.194	4.262
						kumuliert	30.918	10.890	6.834	13.194	0
1999	KEM.4	KEM	797,00	428,94	0,54	einzeln	175.519	108.158	8.635	58.725	4.289
						kumuliert	175.519	108.158	8.635	58.725	0

)89-21553310	33-100 Fax: 0	Telefon: 089-21553			3 Puchheim	82178		tr. 5	Lindberghs	s.mbH	b-a-u ing.ges
	o.d.T.	Prognosezustand Stadt Rothenburg	iekt-Variante: traggeber:				thenburg o.d.T	_	Projekt-Bez Projekt-Nur	ie Einzugsgebiete	Ergebnisse Hydrolog i
qr	QR	QF	QS	Qges		PSI	Neff	N	Тур	Element	Zeitraum
[cbm/ha]	[cbm]	[cbm]	[cbm]	[cbm]		[-]	[mm]	[mm]			
0	0	12.614	27.052	39.666	einzeln	0,00	0,00	797,00	KES	KES.3	1999
0	0	12.614	27.052	39.666	kumuliert						
4.289	128.470	37.785	108.306	274.562	einzeln	0,54	428,89	797,00	KEM	KEM.3	1999
0	128.470	50.400	135.358	314.228	kumuliert						
0	0	9.461	18.084	27.545	einzeln	0,00	0,00	797,00	KES	KES.2	1999
0	0	9.461	18.084	27.545	kumuliert						
4.294	60.304	17.715	68.492	146.512	einzeln	0,54	429,40	797,00	KEM	KEM.2	1999
C	60.304	27.176	86.576	174.057	kumuliert						
C	0	31.220	71.892	103.113	einzeln	0,00	0,00	797,00	KES	KES.6	1999
0	0	31.220	71.892	103.113	kumuliert						
C	0	18.921	14.487	33.408	einzeln	0,00	0,00	797,00	KES	Westl-OT	1999
C	0	18.921	14.487	33.408	kumuliert						
4.319	6.787	2.478	43.362	52.627	einzeln	0,54	431,89	797,00	KEM	<u>KEM.1</u>	1999
0	6.787	2.478	43.362	52.627	kumuliert						
0	0	0	0	0	einzeln	0,00	0,00	0,00	***	<u>Gesamtsystem</u>	1999
4.279	1.023.529	359.228	1.121.536	2.504.293	kumuliert						
0	0	0	0	0	einzeln	0,00	0,00	0,00	KEM	KEM.Bettenfeld	1999
C	0	0	0	0	kumuliert						
C	0	0	0	0	einzeln	0,00	0,00	0,00	KEM	KEM.Gebsattel	1999
0	0	0	0	0	kumuliert						
0	0	0	0	0	einzeln	0,00	0,00	0,00	KES	KES.663	1999
C	0	0	0	0	kumuliert						

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

Detaillierter Nachweis

Erstellungszeitpunkt: 12.04.2021 16:41:50

Seite

b-a-u ing.ges	s.mbH	Lindberghst	r. 5		82178	Puchheim			Telefon: 089-215533-1	00 Fax: ()89-21553310
Ergebnisse Hydrolog i	ie Einzugsgebiete	Projekt-Bez Projekt-Nun	_	nburg o.d.T					Prognosezustand Stadt Rothenburg o.d.	Г.	
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]
1999	KEM.608	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	0
1999	Wachsenberg	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	0
1999	KEM.Neusitz	KEM	0,00	0,00	0,00	einzeln	0	0	0	0	0
1999	<u>KEM.6</u>	KEM	0,00	0,00	0,00	kumuliert einzeln	0	0	0	0	0
1999	KES.652-661	KES	0,00	0,00	0,00	kumuliert einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0
1999	<u>KEM.606</u>	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	0
1999	<u>KES.5</u>	KES	0,00	0,00	0,00	einzeln kumuliert	0 0	0 0	0 0	0	C C
1999	<u>KEM.5</u>	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	0
1999	<u>Leuzenbronn</u>	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	(
999	<u>KEM.4</u>	KEM	0,00	0,00	0,00	einzeln	0	0	0	0	(
999	KES.3	KES	0,00	0,00	0,00	kumuliert einzeln	0	0	0	0	0
						kumuliert	0	0	0	0	0

Seite

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

b-a-u ing.ges.r	mbH	Lindberghs	tr. 5		82178	Puchheim			Telefon: 089-2155	33-100 Fax: 0	89-21553310
Ergebnisse Hydrologie	e Einzugsgebiete	Projekt-Be: Projekt-Nu	_	enburg o.d.T				ojekt-Variante: ftraggeber:	Prognosezustand Stadt Rothenburg	o.d.T.	
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]
1999	KEM.3	KEM	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	0
1999	<u>KES.2</u>	KES	0,00	0,00	0,00	einzeln	0	0	0	0	
7000	<u>1120.2</u>	NEO .	0,00	0,00	0,00	kumuliert	0	0	0	0	C
1999	KEM.2	KEM	0,00	0,00	0,00	einzeln	0	0	0	0	(
1999	<u>KES.6</u>	KES	0,00	0,00	0,00	kumuliert einzeln	0	0	0	0	
1999	<u>NE3.0</u>	KES	0,00	0,00	0,00	kumuliert	0	0	0	0	C
1999	Westl-OT	KES	0,00	0,00	0,00	einzeln	0	0	0	0	(
1999	VEM 4	KEM	0,00	0,00	0,00	kumuliert	0	0	0	0	
1999	<u>KEM.1</u>	KEW	0,00	0,00	0,00	einzeln kumuliert	0	0	0	0	C
1999	<u>Gesamtsystem</u>	***	0,00	0,00	0,00	einzeln	0	0	0	0	C
0:1	O	***	0.00	0.00	0.00	kumuliert	0	0	0	0	
Simulation	<u>Gesamtsystem</u>		0,00	0,00	0,00	einzeln kumuliert	0 4.992.752	0 2.243.072	0 718.455	0 2.031.225	8.492
Jahresmittel	Gesamtsystem (365 Tage)	***	0,00	0,00	0,00	einzeln	0	0	0	0	C
						kumuliert	2.499.800	1.123.075	359.720	1.017.006	4.252
Simulation	KEM.Bettenfeld	KEM	1.592,05	851,10	0,53	einzeln kumuliert	78.703 78.703	19.907 19.907	18.096 18.096	40.699 40.699	8.511 0
i.М.	KEM.Bettenfeld	KEM	797,12	426,13	0,53	einzeln	39.405	9.967	9.061	20.378	4.261
						kumuliert	39.405	9.967	9.061	20.378	C

Seite

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

b-a-u ing.ges.	.mbH	Lindbergh	str. 5		82178	Puchheim			Telefon: 089-21553	33-100 Fax: 0	89-21553310
Ergebnisse Hydrologi e	e Einzugsgebiete	Projekt-Be Projekt-Nu	0	enburg o.d.T				jekt-Variante: traggeber:	Prognosezustand Stadt Rothenburg	o.d.T.	
Zeitraum	Element	Тур	N	Neff	PSI		Qges	QS	QF	QR	qr
			[mm]	[mm]	[-]		[cbm]	[cbm]	[cbm]	[cbm]	[cbm/ha]
Simulation	KEM.Gebsattel	KEM	1.592,05	846,00	0,53	einzeln	460.722	168.740	90.242	201.740	8.460
						kumuliert	460.722	168.740	90.242	201.740	C
i.M.	KEM.Gebsattel	KEM	797,12	423,58	0,53	einzeln	230.677	84.485	45.183	101.009	4.236
						kumuliert	230.677	84.485	45.183	101.009	C
Simulation	KES.663	KES	1.592,05	0,00	0,00	einzeln	20.222	15.177	5.046	0	C
						kumuliert	20.222	15.177	5.046	0	C
i.M.	KES.663	KES	797,12	0,00	0,00	einzeln	10.125	7.599	2.526	0	(
						kumuliert	10.125	7.599	2.526	0	(
Simulation	KEM.608	KEM	1.592,05	846,00	0,53	einzeln	337.172	144.868	44.174	148.130	8.460
						kumuliert	357.394	160.045	49.220	148.130	(
i.M.	KEM.608	KEM	797,12	423,58	0,53	einzeln	168.817	72.533	22.117	74.166	4.236
						kumuliert	178.942	80.132	24.644	74.166	(
Simulation	Wachsenberg	KEM	1.592,05	846,00	0,53	einzeln	58.808	10.687	6.244	41.877	8.460
						kumuliert	58.808	10.687	6.244	41.877	C
i.M.	Wachsenberg	KEM	797,12	423,58	0,53	einzeln	29.444	5.351	3.126	20.967	4.236
						kumuliert	29.444	5.351	3.126	20.967	C
Simulation	KEM.Neusitz	KEM	1.592,05	854,88	0,54	einzeln	486.312	150.497	43.180	292.635	8.549
						kumuliert	545.120	161.184	49.424	334.511	(
i.M.	KEM.Neusitz	KEM	797,12	428,02	0,54	einzeln	243.489	75.352	21.620	146.518	4.280
						kumuliert	272.934	80.703	24.746	167.485	C
Simulation	KEM.6	KEM	1.592,05	846,00	0,53	einzeln	770.676	270.716	114.846	385.114	8.460
						kumuliert	1.128.070	430.761	164.065	533.244	C

Seite

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

39-21553310	33-100 Fax: 0	Telefon: 089-21553			8 Puchheim	82178		nstr. 5	Lindbergh	o-a-u ing.ges.mbH	
	o.d.T.	Prognosezustand Stadt Rothenburg	ekt-Variante: raggeber:				enburg o.d.T	0	Projekt-Be Projekt-Nu	e Einzugsgebiete	Ergebnisse Hydrologi e
qr [cbm/ha]	QR [cbm]	QF [cbm]	QS [cbm]	Qges [cbm]		PSI [-]	Neff [mm]	N [mm]	Тур	Element	Zeitraum
4.236	192.821 266.988	57.502 82.145	135.544 215.676	385.867 564.809	einzeln kumuliert	0,53	423,58	797,12	KEM	KEM.6	i.M.
0	0	16.399 16.399	27.101 27.101	43.500 43.500	einzeln kumuliert	0,00	0,00	1.592,05	KES	KES.652-661	Simulation
0	0	8.211 8.211	13.569 13.569	21.780 21.780	einzeln kumuliert	0,00	0,00	797,12	KES	KES.652-661	i.M.
8.460	28.366 28.366	6.344 22.743	6.701 33.803	41.412 84.912	einzeln kumuliert	0,53	846,00	1.592,05	KEM	<u>KEM.606</u>	Simulation
4.236	14.203 14.203	3.177 11.387	3.355 16.924	20.734 42.514	einzeln kumuliert	0,53	423,58	797,12	KEM	KEM.606	i.M.
0	0	1.892 1.892	1.380 1.380	3.272 3.272	einzeln kumuliert	0,00	0,00	1.592,05	KES	<u>KES.5</u>	Simulation
0	0	947 947	691 691	1.638 1.638	einzeln kumuliert	0,00	0,00	797,12	KES	<u>KES.5</u>	i.M.
8.490	361.936 361.936	80.662 82.554	485.851 487.230	928.448 931.720	einzeln kumuliert	0,53	849,02	1.592,05	KEM	KEM.5	Simulation
4.251 0	181.216 181.216	40.386 41.334	243.259 243.949	464.861 466.499	einzeln kumuliert	0,53	425,09	797,12	KEM	KEM.5	i.M.
8.460	26.192 26.192	13.669 13.669	21.780 21.780	61.640 61.640	einzeln kumuliert	0,53	846,00	1.592,05	KEM	<u>Leuzenbronn</u>	Simulation
4.236	13.114 13.114	6.844 6.844	10.905 10.905	30.862 30.862	einzeln kumuliert	0,53	423,58	797,12	KEM	<u>Leuzenbronn</u>	.M.

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

Detaillierter Nachweis

Erstellungszeitpunkt: 12.04.2021 16:41:50

Seite 10

89-21553310	33-100 Fax: 0	Telefon: 089-21553			3 Puchheim	82178		istr. 5	Lindbergh	-a-u ing.ges.mbH	b-a-u ing.ges.
	o.d.T.	Prognosezustand Stadt Rothenburg o	ekt-Variante: raggeber:				nenburg o.d.T	_	Projekt-Be Projekt-Nu	e Einzugsgebiete	Ergebnisse Hydrologi e
qr	QR	QF	QS	Qges		PSI	Neff	N	Тур	Element	Zeitraum
[cbm/ha]	[cbm]	[cbm]	[cbm]	[cbm]		[-]	[mm]	[mm]			
8.511	116.521	17.270	216.317	350.108	einzeln	0,53	851,10	1.592,05	KEM	KEM.4	Simulation
0	116.521	17.270	216.317	350.108	kumuliert						
4.261	58.340	8.647	108.307	175.294	einzeln	0,53	426,13	797,12	KEM	KEM.4	i.M.
0	58.340	8.647	108.307	175.294	kumuliert						
C	0	25.229	54.104	79.333	einzeln	0,00	0,00	1.592,05	KES	KES.3	Simulation
C	0	25.229	54.104	79.333	kumuliert						
C	0	12.632	27.089	39.721	einzeln	0,00	0,00	797,12	KES	KES.3	i.M.
C	0	12.632	27.089	39.721	kumuliert						
8.510	254.909	75.571	216.613	547.093	einzeln	0,53	850,99	1.592,05	KEM	KEM.3	Simulation
C	254.909	100.799	270.717	626.425	kumuliert						
4.261	127.629	37.837	108.455	273.922	einzeln	0,53	426,08	797,12	KEM	KEM.3	i.M.
C	127.629	50.469	135.544	313.642	kumuliert						
C	0	18.921	36.168	55.089	einzeln	0,00	0,00	1.592,05	KES	KES.2	Simulation
0	0	18.921	36.168	55.089	kumuliert						
C	0	9.474	18.109	27.582	einzeln	0,00	0,00	797,12	KES	KES.2	i.M.
0	0	9.474	18.109	27.582	kumuliert						
8.519	119.645	35.431	136.984	292.060	einzeln	0,54	851,94	1.592,05	KEM	KEM.2	Simulation
0	119.645	54.352	173.152	347.150	kumuliert						
4.266	59.905	17.740	68.586	146.230	einzeln	0,54	426,56	797,12	KEM	KEM.2	i.M.
0	59.905	27.213	86.695	173.813	kumuliert						
0	0	62.441	143.784	206.225	einzeln	0,00	0,00	1.592,05	KES	KES.6	Simulation
0	0	62.441	143.784	206.225	kumuliert						

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

Detaillierter Nachweis

Erstellungszeitpunkt: 12.04.2021 16:41:50

Seite 11

b-a-u ing.ges.	.mbH	Lindbergh	str. 5		82178	3 Puchheim		T	Telefon: 089-21553	3-100 Fax: 0	89-215533100
Ergebnisse Hydrologi e	e Einzugsgebiete	Projekt-Be Projekt-Ne	o .	enburg o.d.T					Prognosezustand Stadt Rothenburg o	o.d.T.	
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]
i.M.	KES.6	KES	797,12	0,00	0,00	einzeln kumuliert	103.254 103.254	71.991 71.991	31.263 31.263	0 0	0 0
Simulation	Westl-OT	KES	1.592,05	0,00	0,00	einzeln kumuliert	66.817 66.817	28.974 28.974	37.843 37.843	0	0
i.M.	Westl-OT	KES	797,12	0,00	0,00	einzeln kumuliert	33.454 33.454	14.507 14.507	18.947 18.947	0	0
Simulation	<u>KEM.1</u>	KEM	1.592,05	856,56	0,54	einzeln kumuliert	105.141 105.141	86.724 86.724	4.956 4.956	13.461 13.461	8.566 0
i.M.	<u>KEM.1</u>	KEM	797,12	428,87	0,54	einzeln kumuliert	52.642 52.642	43.421 43.421	2.481 2.481	6.740 6.740	4.289 0

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puch	178 Puchheim Telefon: 089-215533-100 Fax: 089-215533100						533100
Ergebnisse Hydrologie A1	28	Projekt-Bezeichnung Projekt-Nummer:	: Rothenbur	g o.d.T			Projekt-Va Auftragge	J	nosezustand t Rothenburg c	o.d.T.		
Zeitraum	Element	QZU [cbm]	QD [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	QKUE [cbm]	TKUE [h]	QBUE [cbm]	TBUE [h]	n [1/a]	e0 [%]
1997	RUB.1	0	0	0	0	0	0	0,00	0	0,00	0	0,00
1997	<u>Gesamtsystem</u>	0	0	0	0	0	0	0,00	0	0,00	0	0,00
1998	RUB.1	2.488.459	2.056.124	1.121.535	359.227	1.007.696	394.864	109,35	37.470	5,40	25	42,90
1998	<u>Gesamtsystem</u>	2.488.459	2.056.124	1.121.535	359.227	1.007.696	394.864	109,35	37.470	5,40	25	42,90
1999	RUB.1	2.504.292	2.097.642	1.121.536	359.228	1.023.529	381.586	117,71	25.065	4,98	23	39,73
1999	<u>Gesamtsystem</u>	2.504.292	2.097.642	1.121.536	359.228	1.023.529	381.586	117,71	25.065	4,98	23	39,73
1999	RUB.1	0	0	0	0	0	0	0,00	0	0,00	0	0,00
1999	<u>Gesamtsystem</u>	0	0	0	0	0	0	0,00	0	0,00	0	0,00
Simulation	<u>Gesamtsystem</u>	4.992.751	4.153.766	2.243.071	718.455	2.031.225	776.450	227,06	62.535	10,37	48	41,30
Jahresmittel	Gesamtsystem (365 Tage)	2.499.800	2.079.732	1.123.074	359.720	1.017.006	388.758	113,69	31.310	5,19	24	41,30
Simulation	RUB.1	4.992.751	4.153.766	2.243.071	718.455	2.031.225	776.450	227,06	62.535	10,37	48	41,30
i.M.	RUB.1	2.499.800	2.079.732	1.123.074	359.720	1.017.006	388.758	113,69	31.310	5,19	24	41,30

b-a-u ing	-a-u ing.ges.mbH	Lindberghstr.	Lindberghstr. 5 82178 Puchheim Telefon: 089-215533-100							Fax: 089-215533100	
Ergebnis Fracht e	se en Bauwerke		Projekt-Bezei Projekt-Numr	ichnung: Roti mer: 2	nenburg o.d.T				ojekt-Variante: uftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.	
			Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
RUB.1		Zulauf	0	0	0	0	0	0	0	0,00	
Тур	RUB	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum	1997	ΚÜ	0	0	0	0	0	0	0	0,00	
		Abfluss	0	0	0	0	0	0	0	0,00	
RUB.1		Zulauf	2.488.459	459.734	81.853	649.723	876.181	606.048	832.616	1.389,37	
Тур	RUB	ВÜ	37.470	463	91	3.355	4.077	480	3.376	5,40	
Zeitraum	1998	ΚÜ	394.864	9.037	1.698	39.552	48.895	10.619	41.529	109,35	
		Abfluss	2.056.124	450.234	80.063	606.816	823.209	594.950	787.710	2.214,10	
RUB.1		Zulauf	2.504.292	459.908	81.888	651.121	877.876	606.223	834.014	1.357,25	
Тур	RUB	ВÜ	25.065	337	66	2.273	2.768	357	2.298	4,98	
Zeitraum	1999	ΚÜ	381.586	8.069	1.524	37.498	46.248	9.371	39.125	117,71	
		Abfluss	2.097.642	451.502	80.298	611.350	828.859	596.495	792.591	2.138,31	
RUB.1		Zulauf	0	0	0	0	0	0	0	0,00	
Тур	RUB	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum	1999	KÜ	0	0	0	0	0	0	0	0,00	
		Abfluss	0	0	0	0	0	0	0	0,00	
RUB.1		Zulauf	4.992.751	919.642	163.741	1.300.844	1.754.057	1.212.272	1.666.631	2.746,62	
Тур	RUB	ВÜ	62.535	800	157	5.628	6.845	837	5.675	10,37	
Zeitraum	Simulation	ΚÜ	776.450	17.106	3.222	77.049	95.143	19.990	80.654	227,06	
		Abfluss	4.153.766	901.736	160.361	1.218.166	1.652.069	1.191.445	1.580.302	4.352,42	

b-a-u ing.ges.mbH		Lindberghstr.	. 5		82178	Puchheim			Telefon: 089-215533-100	Fax: 089-215533100
Ergebnisse Frachten Bauwerke		Projekt-Beze Projekt-Numr	ichnung: Roth mer: 2	nenburg o.d.T				ojekt-Variante ıftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.	
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
RUB.1	Zulauf	2.499.800	460.452	81.983	651.314	878.232	606.967	834.458	1.375,20	
Typ RUB	ВÜ	31.310	401	79	2.818	3.427	419	2.841	5,19	
Zeitraum <i>i.M.</i>	KÜ	388.758	8.565	1.613	38.578	47.637	10.009	40.382	113,69	
	Abfluss	2.079.732	451.486	80.291	609.918	827.168	596.540	791.235	2.179,19	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-215533100
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu 2	rg o.d.T			Projekt-' Auftragg		ognosezustand ldt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.Bettenfeld	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Gebsattel	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Kaiserweg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Wachsenberg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Neusitz	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchhe	im		Tel	efon: 089-215533-100	Fax: 089-215533100
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu 2	rg o.d.T			Projekt-' Auftragg		ognosezustand odt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.6.3 (RÜ VIII)	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.6	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
<u>EST.5</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Leuzenbronn	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
<u>EST.4</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu 2	rg o.d.T			Projekt-\ Auftragg		gnosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.3	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.2	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
<u>EST.1</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1997	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Bettenfeld	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	630.714	3.154	189	9.461	0	3.154	9.461	0,00	
	Abfluss	630.714	3.154	189	9.461	0	3.154	9.461	0,00	
EST.Gebsattel	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	9.933.746	49.669	2.980	149.006	0	49.669	149.006	0,00	
	Abfluss	9.933.746	49.669	2.980	149.006	0	49.669	149.006	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt- Auftragg		ognosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.Kaiserweg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	63.071	315	19	946	0	315	946	0,00	
	Abfluss	63.071	315	19	946	0	315	946	0,00	
EST.Wachsenberg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	126.143	631	38	1.892	0	631	1.892	0,00	
	Abfluss	126.143	631	38	1.892	0	631	1.892	0,00	
EST.Neusitz	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	126.143	0	0	0	0	0	0	0,00	
	Abfluss	126.143	631	38	1.892	0	631	1.892	0,00	
EST.6.3 (RÜ VIII)	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	277.514	1.388	83	4.163	0	1.388	4.163	0,00	
	Abfluss	277.514	2.018	121	6.055	0	2.018	6.055	0,00	
EST.6	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	403.657	2.018	121	6.055	0	2.018	6.055	0,00	
	Abfluss	403.657	2.018	121	6.055	0	2.018	6.055	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt-\ Auftragg		gnosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.5	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	10.375.245	51.876	3.113	155.629	0	51.876	155.629	0,00	
	Abfluss	11.245.631	56.859	3.412	170.577	0	56.859	170.577	2.410,08	
EST.Leuzenbronn	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	63.071	315	19	946	0	315	946	0,00	
	Abfluss	63.071	315	19	946	0	315	946	0,00	
EST.4	Einleitungen	870.385	4.983	299	14.948	0	4.983	14.948	2.410,08	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	10.485.620	52.428	3.146	157.284	0	52.428	157.284	0,00	
	Abfluss	11.356.006	57.411	3.445	172.232	0	57.411	172.232	2.410,08	
EST.3	Einleitungen	870.385	4.983	299	14.948	0	4.983	14.948	2.410,08	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	10.540.808	52.704	3.162	158.112	0	52.704	158.112	0,00	
	Abfluss	11.411.193	57.687	3.461	173.060	0	57.687	173.060	2.410,08	
EST.2	Einleitungen	870.385	4.983	299	14.948	0	4.983	14.948	2.410,08	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	10.595.995	52.980	3.179	158.940	0	52.980	158.940	0,00	
	Abfluss	11.466.381	57.963	3.478	173.888	0	57.963	173.888	2.410,08	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puch	heim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt-' Auftragg		ognosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.1	Einleitungen	3.358.844	24.762	12.369	78.416	145.498	26.362	80.415	2.410,10	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1998	MNQ	10.761.558	53.808	3.228	161.423	0	53.808	161.423	0,00	
	Abfluss	14.120.401	78.570	15.598	239.839	145.498	80.170	241.838	2.410,10	
EST.Bettenfeld	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	630.716	3.154	189	9.461	0	3.154	9.461	0,00	
	Abfluss	630.716	3.154	189	9.461	0	3.154	9.461	0,00	
EST.Gebsattel	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	9.933.769	49.669	2.980	149.007	0	49.669	149.007	0,00	
	Abfluss	9.933.769	49.669	2.980	149.007	0	49.669	149.007	0,00	
EST.Kaiserweg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	63.072	315	19	946	0	315	946	0,00	
	Abfluss	63.072	315	19	946	0	315	946	0,00	
EST.Wachsenberg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	126.143	631	38	1.892	0	631	1.892	0,00	
	Abfluss	126.143	631	38	1.892	0	631	1.892	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-10	Fax: 089-215533100
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu 2	rg o.d.T			Projekt-\ Auftragg		gnosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.Neusitz	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	126.143	0	0	0	0	0	0	0,00	
	Abfluss	126.143	631	38	1.892	0	631	1.892	0,00	
EST.6.3 (RÜ VIII)	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	277.515	1.388	83	4.163	0	1.388	4.163	0,00	
	Abfluss	277.515	2.018	121	6.055	0	2.018	6.055	0,00	
<u>EST.6</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	403.658	2.018	121	6.055	0	2.018	6.055	0,00	
	Abfluss	403.658	2.018	121	6.055	0	2.018	6.055	0,00	
<u>EST.5</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	10.375.270	51.876	3.113	155.629	0	51.876	155.629	0,00	
	Abfluss	11.245.657	56.859	3.412	170.577	0	56.859	170.577	2.341,52	
EST.Leuzenbronn	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	63.072	315	19	946	0	315	946	0,00	
	Abfluss	63.072	315	19	946	0	315	946	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puch	heim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt-\ Auftragg		ognosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.4	Einleitungen	870.387	4.983	299	14.948	0	4.983	14.948	2.341,52	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	10.485.645	52.428	3.146	157.285	0	52.428	157.285	0,00	
	Abfluss	11.356.033	57.411	3.445	172.233	0	57.411	172.233	2.341,52	
<u>EST.3</u>	Einleitungen	870.387	4.983	299	14.948	0	4.983	14.948	2.341,52	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	10.540.833	52.704	3.162	158.112	0	52.704	158.112	0,00	
	Abfluss	11.411.220	57.687	3.461	173.060	0	57.687	173.060	2.341,52	
EST.2	Einleitungen	870.387	4.983	299	14.948	0	4.983	14.948	2.341,52	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	10.596.020	52.980	3.179	158.940	0	52.980	158.940	0,00	
	Abfluss	11.466.408	57.963	3.478	173.888	0	57.963	173.888	2.341,52	
<u>EST.1</u>	Einleitungen	3.374.680	23.878	12.377	75.696	143.410	25.199	77.347	2.341,54	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	10.761.583	53.808	3.228	161.424	0	53.808	161.424	0,00	
	Abfluss	14.136.263	77.686	15.605	237.119	143.410	79.007	238.771	2.341,54	
EST.Bettenfeld	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchhei	m		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	rg o.d.T			Projekt-\ Auftragg		ognosezustand ldt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.Gebsattel	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Kaiserweg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Wachsenberg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Neusitz	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.6.3 (RÜ VIII)	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchhei	m		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu 2	rg o.d.T			Projekt-\ Auftragg		gnosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.6	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
<u>EST.5</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Leuzenbronn	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
<u> </u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
<u>EST.3</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu 2	rg o.d.T			Projekt-\ Auftragg		ognosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.2	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
<u>EST.1</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum 1999	MNQ	0	0	0	0	0	0	0	0,00	
	Abfluss	0	0	0	0	0	0	0	0,00	
EST.Bettenfeld	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	1.261.430	6.307	378	18.921	0	6.307	18.921	0,00	
	Abfluss	1.261.430	6.307	378	18.921	0	6.307	18.921	0,00	
EST.Bettenfeld	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	631.580	3.158	189	9.474	0	3.158	9.474	0,00	
	Abfluss	631.580	3.158	189	9.474	0	3.158	9.474	0,00	
EST.Gebsattel	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	19.867.515	99.338	5.960	298.013	0	99.338	298.013	0,00	
	Abfluss	19.867.515	99.338	5.960	298.013	0	99.338	298.013	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt- Auftragg		gnosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.Gebsattel	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	9.947.384	49.737	2.984	149.211	0	49.737	149.211	0,00	
	Abfluss	9.947.384	49.737	2.984	149.211	0	49.737	149.211	0,00	
EST.Kaiserweg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	126.143	631	38	1.892	0	631	1.892	0,00	
	Abfluss	126.143	631	38	1.892	0	631	1.892	0,00	
EST.Kaiserweg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	MNQ	63.158	316	19	947	0	316	947	0,00	
	Abfluss	63.158	316	19	947	0	316	947	0,00	
EST.Wachsenberg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	252.286	1.261	76	3.784	0	1.261	3.784	0,00	
	Abfluss	252.286	1.261	76	3.784	0	1.261	3.784	0,00	
EST.Wachsenberg	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	126.316	632	38	1.895	0	632	1.895	0,00	
	Abfluss	126.316	632	38	1.895	0	632	1.895	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu 2	ırg o.d.T			Projekt-' Auftragg		ognosezustand ldt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.Neusitz	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	252.286	0	0	0	0	0	0	0,00	
	Abfluss	252.286	1.261	76	3.784	0	1.261	3.784	0,00	
EST.Neusitz	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	MNQ	126.316	0	0	0	0	0	0	0,00	
	Abfluss	126.316	632	38	1.895	0	632	1.895	0,00	
EST.6.3 (RÜ VIII)	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	555.029	2.775	167	8.325	0	2.775	8.325	0,00	
	Abfluss	555.029	4.037	242	12.110	0	4.037	12.110	0,00	
EST.6.3 (RÜ VIII)	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	277.895	1.389	83	4.168	0	1.389	4.168	0,00	
	Abfluss	277.895	2.021	121	6.063	0	2.021	6.063	0,00	
<u>EST.6</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	807.315	4.037	242	12.110	0	4.037	12.110	0,00	
	Abfluss	807.315	4.037	242	12.110	0	4.037	12.110	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-215533100
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt- Auftragg		ognosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.6	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	404.211	2.021	121	6.063	0	2.021	6.063	0,00	
	Abfluss	404.211	2.021	121	6.063	0	2.021	6.063	0,00	
<u>EST.5</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	20.750.515	103.753	6.225	311.258	0	103.753	311.258	0,00	
	Abfluss	22.491.288	113.718	6.823	341.154	0	113.718	341.154	4.751,60	
<u>EST.5</u>	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	10.389.490	51.947	3.117	155.842	0	51.947	155.842	0,00	
	Abfluss	11.261.070	56.937	3.416	170.811	0	56.937	170.811	2.379,06	
EST.Leuzenbronn	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	126.143	631	38	1.892	0	631	1.892	0,00	
	Abfluss	126.143	631	38	1.892	0	631	1.892	0,00	
EST.Leuzenbronn	Einleitungen	0	0	0	0	0	0	0	0,00	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	63.158	316	19	947	0	316	947	0,00	
	Abfluss	63.158	316	19	947	0	316	947	0,00	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchh	eim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	urg o.d.T			Projekt-\ Auftragg		ognosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.4	Einleitungen	1.740.773	9.965	598	29.896	0	9.965	29.896	4.751,60	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	20.971.265	104.856	6.291	314.569	0	104.856	314.569	0,00	
	Abfluss	22.712.038	114.822	6.889	344.465	0	114.822	344.465	4.751,60	
<u> </u>	Einleitungen	871.580	4.989	299	14.968	0	4.989	14.968	2.379,06	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	10.500.016	52.500	3.150	157.500	0	52.500	157.500	0,00	
	Abfluss	11.371.597	57.490	3.449	172.469	0	57.490	172.469	2.379,06	
<u>EST.3</u>	Einleitungen	1.740.773	9.965	598	29.896	0	9.965	29.896	4.751,60	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	21.081.641	105.408	6.324	316.225	0	105.408	316.225	0,00	
	Abfluss	22.822.413	115.373	6.922	346.120	0	115.373	346.120	4.751,60	
EST.3	Einleitungen	871.580	4.989	299	14.968	0	4.989	14.968	2.379,06	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	MNQ	10.555.280	52.776	3.167	158.329	0	52.776	158.329	0,00	
	Abfluss	11.426.860	57.766	3.466	173.298	0	57.766	173.298	2.379,06	
<u> </u>	Einleitungen	1.740.773	9.965	598	29.896	0	9.965	29.896	4.751,60	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	21.192.016	105.960	6.358	317.880	0	105.960	317.880	0,00	
	Abfluss	22.932.788	115.925	6.956	347.776	0	115.925	347.776	4.751,60	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puch	heim		Tel	efon: 089-215533-100	Fax: 089-215533100
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt-\ Auftragg		ognosezustand odt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.2	Einleitungen	871.580	4.989	299	14.968	0	4.989	14.968	2.379,06	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	10.610.543	53.053	3.183	159.158	0	53.053	159.158	0,00	
	Abfluss	11.482.123	58.042	3.483	174.127	0	58.042	174.127	2.379,06	
<u> </u>	Einleitungen	6.733.524	48.640	24.746	154.111	288.908	51.561	157.762	4.751,65	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	21.523.141	107.616	6.457	322.847	0	107.616	322.847	0,00	
	Abfluss	28.256.664	156.256	31.203	476.958	288.908	159.177	480.610	4.751,65	
<u> </u>	Einleitungen	3.371.380	24.353	12.390	77.161	144.652	25.816	78.989	2.379,08	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	MNQ	10.776.333	53.882	3.233	161.645	0	53.882	161.645	0,00	
	Abfluss	14.147.713	78.235	15.623	238.806	144.652	79.698	240.634	2.379,08	

Anlage 3.2 Ergebnisse

Einzelbeckenberechnung

nach ATV DVWK-A 128

b-a-u ing.ges.mbH

Rothenburg o.d.T Projekt-Nummer: Stadt Rothenburg o.d.T. Prognosezustand Auftraggeber:

ja

🥑 geschlossenes Siedlungsgebiet

En	4147	urfor	/orfo	CCO

Name b-a-u ing.ges.mbH Strasse Lindberghstr. 5 PLZ 82178 Puchheim Ort 089-215533-100 Telefon 089-215533109 Fax e-mail lezius@b-a-u-ingenieure.de

Verwaltungsdaten

Nummer

Name geschlossenes Siedlungsgebiet

Prognosezustand
Stadt Rothenburg o.d.T. Variante Auftraggeber 25.02.1998 Bearbeitungsdatum

Hydrologie und Hydraulik

mittlere Jahresniederschlagshöhe HNa 725 mm/a Jahresabflußbeiwert PSIa 0,70 15-Minuten-Regenspende (n=1) maßgebliche Regendauer r15,1 109,60 l/(s*ha) Tm 10 min Zeitbeiwert PHIm 1,00 -Summe erforderl. Speichervolumen Sum V 3.777,85 m^3

Abflussberechnung nach Zeitbeiwertverfahren

Trockenwetterabfluss	Tagesmittel	_	
Einwohnerzahl	EZ	23.263	Ε
häuslicher Schmutzwasserabfluss	Qh24	35,56	l/s
gewerblicher Schmutzwasserabfluss	Qg24	0,00	l/s
Schmutzwasserabfluss	Qs24	35,56	l/s
Fremdwasserabfluss	Qf24	11,39	l/s
Trockenwetterabfluss	Qt24	46,95	l/s
	Tagesspitze		
häuslicher Schmutzwasserabfluss	Qhx	69,67	l/s
gewerblicher Schmutzwasserabfluss	Qgx	0,00	l/s
Schmutzwasserabfluss	Qsx	69,67	l/s
Trockenwetterabfluss	Qtx	81,06	l/s

Regenwetterabfluss

unabgeminderter Regenabfluss Qr15 0,00 l/s abgeminderter Regenabfluss 0,00 l/s Qr unabminderbarar Regenabfluss 26.312,40 uQr l/s längste Fliesszeit LTf 150,00 min maßgebliche Fliesszeit Τf 0,00 min Zeitbeiwert PHI 1,00 Regenabfluss aus Trennsystem QrT24 l/s 16,39

Einzugsgebiet

Einzugsgebietsfläche 0,00 ha ΑE Sum AE 524,29 ha undurchlässige Fläche 0,00 ha Au Sum Au 1.230,12 ha mittlere Geländeneigungsgruppe NGm 2,29

Statistik

Gesamtzahl der hydrologischen Elemente	59
- Geschlossenes Siedlungsgebiet	1
- Mischwassernetze	13
- Regenwassernetze	0
- Schmutzwassernetze	7
- Regenüberläufe	1
- Regenüberlaufbecken und Stauraumkanäle	12
- Regenklärbecken	0
- Kläranlagen	1
- Ortspezifische Maßnahmen	3
- Einleitungsstellen	13
- Verbindungen	7
Anzahl nicht konfigurierter Elemente	13
Regenentlastungen mit Verletzung der Anforderungen	1
Einleitungsstellen mit Verletzung der Anforderungen	0

b-a-u ing.ges.mbH Rothenburg o.d.T		Proie	kt-Nummer:	2		
Prognosezustand		,	aggeber:	_	t Rothenburg o.d.T.	
Regenüberlaufbeck	ΔN		- 55		<u>J</u>	eo > 75 %
••	CII					
RÜB Wachsenberg						
Trockenwetterabfluss	Tagesmittel	Zulauf	Ablauf	Abschlag		
inwohnerzahl	EZ	122	122	0	E	
äuslicher Schmutzwasserabfluss	Qh24	0,17	0,17	0.00	_ l/s	
newerblicher Schmutzwasserabfluss	Qg24	0,00	0,00	0,00	l/s	
Schmutzwasserabfluss	Qs24	0,17	0,17	0,00	l/s	
remdwasserabfluss	Qf24	0,10	0,10	0,00	l/s	
Frockenwetterabfluss	Qt24	0,27	0,27	0,00	l/s	
	Tagesspitze	•	•	,		
näuslicher Schmutzwasserabfluss	Qhx	0,41	0,41	0.00	l/s	
gewerblicher Schmutzwasserabfluss	Qgx	0.00	0,00	0.00		
Schmutzwasserabfluss	Qsx	0,41	0,41	0,00	l/s	
rockenwetterabfluss	Qtx	0,51	0,51	,	l/s	
Regenwetterabfluss		Zulauf	Ablauf	Abschlag		
inabgeminderter Regenabfluss	Qr15	840,91	0,00	0.00	l/s	
abgeminderter Regenabfluss	Qr	840,91	0,00	0,00	l/s	
unabminderbarar Regenabfluss	uQr	0,00	2,23	838,67	l/s	
ängste Fliesszeit	LTf	5,00	5,00	0,00	min	
naßgebliche Fliesszeit	Tf	5,00	0,00	0,00	min	
eitbeiwert eitbeiwert	PHI	1,00	1,00	1,00	-	
Regenabfluss aus Trennsystem	QrT24	0,00	0,00	0,00	l/s	
Einzugsgebiet		Zulauf	Ablauf	Abschlag		
Einzugsgebietsfläche	AE	24,75	0,00	0.00	ha	
Ŭ Ŭ	Sum AE	24,75	24,75	0,00	ha	
undurchlässige Fläche	Au	4,95	0,00	0,00	ha	
U	Sum Au	4,95	4,95	0,00	ha	
200	NO	0.00	0.00	0.00		

	Julii Au	4,93	4,93	0,00 Ha			
mittlere Geländeneigungsgruppe	NGm	2,00	2,00	0,00 -			
Nachweis A128							
Drosselabfluß	QD	2,50	l/s	Auslastungswert Kläranlage	n	5,90	-
Regenabfluss 24-h-Mittel	Qr24	2,23	l/(s*ha)	Einflusswerte			
Regenabflußspende	qr	0,45	l/(s*ha)	Jahresniederschlag	ah	-0,09	-
Trockenwetter-Abflußspende	qt	0,05	l/(s*ha)	TW-Konzentration	ac	1,00	-
mittl. Regenabfluss bei Entlastung	Qre	21,47	l/s	Kanalablagerungen	aa	0,59	-
mittleres Mischverhältnis	m	79,97	-	xa-Wert Kanalablagerungen	xa	12,74	-
erforderliches Mischverhältnis	m_erf	7,00	-	Fließzeit-Abminderung	af	0,98	-
zulässige Entlastungsrate	e0	79,16	%	CSB-Konzentrationen			
spezifisches Speichervolumen	VS	4,18	m^3/ha	Trockenwetter	ct	378,73	mg/l
erforderl. Speichervolumen	V	20,67	m^3	Regenwasser	cr	107,00	mg/l
Summe erforderl. Speichervolumen	Sum V	20,67	m^3	Bemessung	cb	895,56	mg/l
vorhandenes Speichervolumen	VOL	55,00	m^3	Entlastung	ce	116,74	mg/l
max. Klärüberlauf	maxQKÜ	800,00	l/s				
kritischer Regenabfluss	Qrkrit	74,25					
kritischer Mischwasserabfluss	Qkrit	74,52	-				

Kritischer Regenati	niuss		Qrkrit		74,25	I/S							
kritischer Mischwa	sserabfluss		Qkrit		74,52	-							
Lage													
Rechtswert			RW		0,00	-		Hochwert	HW		0,00	-	
Gelände			Gel		0,00	mNN		Strasse					
Frachten ur	nd Konz	entrat	ionen										
Regenabflußspend	degrab	0	0,5	1		2	4	8	16	32	64	128	I/(s*ha)
Mischwasserzufluß	3 QM	0,27	2,74	5,22	10	,17	20,07	39,87	79,47	158,67	317,07	633,87	l/s
Zuflußfracht	BSB5	68	162	217	3	326	544	981	1.855	3.603	7.099	14.090	mg/s
	NH4-N	12	26	39		67	121	231	449	886	1.760	3.508	mg/s
	AFS	85	571	1.008	1.8	382	3.630	7.126	14.117	28.100	56.066	111.998	mg/s
Zuflußkonzentratio	nBSB5	252,48	59,10	41,54	32	,06	27,13	24,62	23,35	22,71	22,39	22,23	mg/l
	NH4-N	44,82	9,36	7,54	6	,55	6,04	5,78	5,65	5,58	5,55	5,53	mg/l
	AFS	315,60	208,27	193,22	185	,11	180,89	178,73	177,65	177,10	176,83	176,69	mg/l
	pH-Wert	7,25	7,38	7,39	7	,40	7,40	7,40	7,40	7,40	7,40	7,40	-
	Alkalinität	2,63	2,96	2,98	2	,99	3,00	3,00	3,00	3,00	3,00	3,00	mmol/l
Regenabfluß	QR	0,00	2,23	2,23	2	,23	2,23	2,23	2,23	2,23	2,23	2,23	l/s
Mischwasserabfluß	3 QM	0,27	2,50	2,50	2	,50	2,50	2,50	2,50	2,50	2,50	2,50	l/s
Abflußfracht	BSB5	68	148	104		80	68	62	58	57	56	56	mg/s
	NH4-N	12	23	19		16	15	14	14	14	14	14	mg/s
	AFS	85	521	483		163	452	447	444	443	442	442	mg/s
Abflußkonzentratio	rBSB5	252,48	59,10	41,54	32	,06	27,13	24,62	23,35	22,71	22,39	22,23	mg/l
	NH4-N	44,82	9,36	7,54	6	,55	6,04	5,78	5,65	5,58	5,55	5,53	mg/l
	AFS	315,60	208,27	193,22	185	,11	180,89	178,73	177,65	177,10	176,83	176,69	mg/l
	pH-Wert	7,25	7,38	7,39	7	,40	7,40	7,40	7,40	7,40	7,40	7,40	-
	Alkalinität	2,63	2,96	2,98	2	,99	3,00	3,00	3,00	3,00	3,00	3,00	mmol/l

	-	
h-a-u	ina.aes	: mhH

Rothenburg o.d.T Prognosezustand Projekt-Nummer: Auftraggeber: 2 Stadt Rothenburg o.d.T.

Regenüberlaufbecken

RUB. Neusi	tz												
Trockenwet	terabflu	uss	Tagesmit	tel	Zulauf		Ablauf	Abschlag					
Einwohnerzahl			EZ		1.840		1.840	0	Е				
häuslicher Schmut	zwasserabf	luss	Qh24		2,56		2,56	0,00					
gewerblicher Schm	nutzwassera	abfluss	Qg24		0,00		0,00	0,00					
Schmutzwasserab			Qs24		2,56		2,56	0,00					
Fremdwasserabflu			Qf24		0,78		0,78	0,00					
Trockenwetterabflu	ISS		Qt24		3,34		3,34	0,00	l/s				
			Tagesspi	tze					.,				
häuslicher Schmut			Qhx		6,08		6,08	0,00					
gewerblicher Schm		abiiuss	Qgx		0,00		0,00	0,00					
Schmutzwasserab Trockenwetterabflu			Qsx Qtx		6,08 6,86		6,08 6,86	0,00 0,00					
Regenwette			QIA		Zulauf		Ablauf	Abschlag	1/3				
unabgeminderter F			Qr15	4 2	258,04		0,00	0,00	I/e				
abgeminderter Reg			Qr		258,04		0,00	0,00					
unabminderbarar F		SS	uQr		2,23		9,66	4.250,61					
längste Fliesszeit	9	-	LTf		11,00		11,00	0,00					
maßgebliche Flies	szeit		Tf		6,00		0,00	0,00					
Zeitbeiwert			PHI		1,00		1,00	1,00	-				
Regenabfluss aus		m	QrT24		0,00		0,00	0,00	l/s				
Einzugsgeb	iet				Zulauf		Ablauf	Abschlag					
Einzugsgebietsfläc	he		AE		67,12		0,00	0,00					
			Sum AE		91,87		91,87	0,00					
undurchlässige Flä	iche		Au		34,23		0,00	0,00					
mittlere Calandara	iaunasan:	no.	Sum Au		39,18		39,18	0,00					
mittlere Geländene		pe	NGm		2,62		2,62	0,00	-				
Nachweis A	128												
Drosselabfluß			QD		13,00			Auslastungs		anlage	n	2,01 -	•
Regenabfluss 24-h			Qr24			l/(s*h		Einflusswer				0.00	
Regenabflußspend			qr			l/(s*h	•	Jahresniede	•		ah	-0,09 -	
Trockenwetter-Abf		tuna	qt Oro	4	0,09 141,10	l/(s*h	ia)	TW-Konzent			ac	1,00 - 0,59 -	
mittl. Regenabfluss mittleres Mischverl		turig	Qre m		42,26	-		Kanalablage xa-Wert Kan		unaan	aa	11,68	
erforderliches Misc			m erf		7,00	-		Fließzeit-Abr			xa af	0,95	
zulässige Entlastu			e0		66,93			CSB-Konze		_	aı	0,00	
spezifisches Speic		1	VS		15,12		ha	Trockenwett		•••	ct	459,19 ı	mg/l
erforderl. Speicher		-	V	5	571,79	m^3		Regenwasse			cr		ng/l
Summe erforderl.		umen	Sum V		592,46	m^3		Bemessung			cb		mg/l
vorhandenes Speid	chervolume	n	VOL	4	175,00	m^3		Entlastung			ce	125,28 ।	mg/l
max. Klärüberlauf			maxQKÜ		500,00								
kritischer Regenab			Qrkrit		513,47								
kritischer Mischwa	sserabiluss		Qkrit		519,04	-							
Lage			D14/										
Rechtswert			RW		0,00	- N I N		Hochwert	HW		0,00	-	
Gelände	. d 17 c :		Gel		0,00	mNN	ı	Strasse					
Frachten un				4		2	4	0	40	20	0.4	400	1//6*6-
Regenabflußspend Mischwasserzufluß		3,34	0,5 22,69	39,80	7/	.,03	4 142,50		16 553,27	32 1.100,97	2.196,37	128 4.387,16	l/(s*ha] l/s
Zuflußfracht	BSB5	1.022	22,69	2.352		.,03 084	4.582		13.638	25.724	49.897	98.246	
Lunusnath	NH4-N	181	2.016	377		564	940		3.205	6.227	12.270	24.358	
	AFS	1.278	5.408	8.393	14.4		26.493	50.661	99.007	195.703	389.097	775.886	
Zuflußkonzentratio		306,13	88,96	59,09		,65	32,16	27,19	24,65	23,36	22,72	22,39	mg/l
	NH4-N	54,34	12,66	9,47		,61	6,60		5,79	5,66	5,59	5,55	mg/l
	AFS	382,66	238,40	210,86	194	,72	185,92	181,31	178,95	177,76	177,15	176,85	mg/l
	pH-Wert	7,30	7,39	7,39		,40	7,40		7,40	7,40	7,40	7,40	
- · · · · ·	Alkalinität	2,77	2,97	2,98		,99	3,00		3,00	3,00	3,00	3,00	
Regenabfluß	QR	0,00	9,66	9,66		,66	9,66		9,66	9,66	9,66	9,66	
Mischwasserabfluß		3,34	13,00	13,00		5,00	13,00		13,00	13,00	13,00	13,00	I/s
Abflußfracht	BSB5	1.022	1.157	768		542	418	353	320	304 74	295 73	291	mg/s
	NH4-N AFS	181 1.278	165 3.099	123 2.741	2 1	99 531	86 2.417	79 2.357	75 2.326	2.311	2.303	72 2.299	
Abflußkonzentratio	rBSB5	306,13	88,96	59,09		,65	32,16	2.357	24,65	23,36	2.303	2.299	mg/s mg/l
ADIIUISKUIIZEIIII AUU	NH4-N	54,34	12,66	9,47		,65 ,61	6,60		5,79	5,66	5,59	5,55	
	AFS	382,66		210,86	194		185,92		178,95	177,76	177,15	176,85	mg/l
	pH-Wert	7,30	7,39	7,39		,40	7,40		7,40	7,40	7,40	7,40	
	Alkalinität	2,77	2,97	2,98		,,99	3,00		3,00	3,00	3,00	3,00	
			,-	,			.,	-,	.,	-,	-,	-,	

b-a-u ing.ges.mbH Rothenburg o.d.T Prognosezustand Projekt-Nummer: Auftraggeber: 2 Stadt Rothenburg o.d.T.

Kläranlage											
KLG.Roth											
Trockenwetterabfluss	Tagesm	ittel									
Einwohnerzahl	EZ	23	.263	Ε							
häuslicher Schmutzwasserabfluss	Qh24	3	5,56	l/s							
gewerblicher Schmutzwasserabfluss	Qg24		,	l/s							
Schmutzwasserabfluss	Qs24		5,56								
Fremdwasserabfluss	Qf24		1,39								
Trockenwetterabfluss	Qt24		6,95	l/S							
	Tagessp		-	.,							
häuslicher Schmutzwasserabfluss	Qhx		9,67								
gewerblicher Schmutzwasserabfluss Schmutzwasserabfluss	Qgx		0,00 9,67								
Trockenwetterabfluss	Qsx Qtx		9,67 1,06								
	QLX		1,00	1/3							
Regenwetterabfluss	0-15		0.00	1/-							
unabgeminderter Regenabfluss	Qr15 Qr		0,00 0,00								
abgeminderter Regenabfluss unabminderbarar Regenabfluss	uQr		6,65	l/s							
längste Fliesszeit	LTf		4,00	min							
maßgebliche Fliesszeit	Tf		,	min							
Zeitbeiwert	PHI		1,00	-							
Regenabfluss aus Trennsystem	QrT24	1	6,39	l/s							
Einzugsgebiet											
Einzugsgebietsfläche	AE		0,00	ha							
3 3	Sum AE	52	4,29	ha							
undurchlässige Fläche	Au		0,00	ha							
	Sum Au		9,18	ha							
mittlere Geländeneigungsgruppe	NGm		2,29	-							
Summe erforderl. Speichervolumen	Sum V		7,85	m/3							
Ablauf-Konzentrationen											
	c BSB5		5,00	· · · · · ·							
	c NH4-N		5,00	mg/l							
	c AFS c CSB		0,00	mg/l							
	pH-Wert		5,00 7,00	mg/l -							
	Alkalinität		2,00	mmo	1/1						
-	7 till dill litter		_,00	1111110	.,.						
l and											
Lage Pochtswort	D\M		0 00			Hochwort	⊔\ \//		0.00		
Rechtswert	RW Gel		0,00			Hochwert Strasse	HW		0,00	-	
Rechtswert Gelände	Gel		,	- mNN		Hochwert Strasse	HW		0,00	-	
Rechtswert Gelände Frachten und Konzentrat	Gel Fionen		,	mNN		Strasse				- 120	
Rechtswert Gelände Frachten und Konzentrat Regenabflußspenderab 0	Gel ionen 0,5	1	0,00	mNN 2	4	Strasse 8	16	32	64		<u> /(s*ha</u>)
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendegrab Mischwasserzufluß QM 46,95	Gel F ionen 0,5 173,01	1 198,27	,	mNN 2 ,00		Strasse 8 200,00	16 200,00	32 200,00		200,00	l/s
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendegrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225	Gel ionen 0,5	1	200 11.7	mNN 2 ,00	4 200,00	Strasse 8	16	32	64 200,00		
Rechtswert Gelände Frachten und Konzentrat Regenabflußspend«grab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782	Gel 5000000000000000000000000000000000000	1 198,27 16.842	200 11.7	mNN 2 ,00 720	4 200,00 8.563	8 200,00 6.810	16 200,00 5.864 1.316 36.453	32 200,00 5.342	64 200,00 5.028	200,00 4.813	l/s mg/s
Rechtswert Gelände Frachten und Konzentrat Regenabflußspend«grab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96	Gel 0,5 173,01 20.990 3.150 45.230 121,32	1 198,27 16.842 2.703 45.652 84,94	200 11.7 2.0 41.4 58	2,00 720 064 181 ,60	4 200,00 8.563 1.663 38.758 42,82	8 200,00 6.810 1.439 37.257 34,05	16 200,00 5.864 1.316 36.453 29,32	32 200,00 5.342 1.246 36.017 26,71	64 200,00 5.028 1.202 35.764 25,14	200,00 4.813 1.169 35.599 24,07	mg/s mg/s mg/s mg/l
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendegrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78	Gel 0,5 173,01 20.990 3.150 45.230 121,32 18,21	1 198,27 16.842 2.703 45.652 84,94 13,64	200 11.7 2.0 41.4 58	2,00 720 064 181 ,60 ,32	4 200,00 8.563 1.663 38.758 42,82 8,32	8 200,00 6.810 1.439 37.257 34,05 7,19	16 200,00 5.864 1.316 36.453 29,32 6,58	32 200,00 5.342 1.246 36.017 26,71 6,23	64 200,00 5.028 1.202 35.764 25,14 6,01	200,00 4.813 1.169 35.599 24,07 5,85	mg/s mg/s mg/s mg/l
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendegrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70	Gel 100 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25	200 11.7 2.0 41.4 58 10 207	mNN 2,000 720 064 481 ,60 ,32 ,40	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82	200,00 4.813 1.169 35.599 24,07 5,85 177,99	mg/s mg/s mg/s mg/l mg/l
Rechtswert Gelände Frachten und Konzentrate Regenabflußspendkgrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14,225 NH4-N 2,525 AFS 17,782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30	Gel 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38	200 11.7 2.0 41.4 58 10 207	mNN 2,00 720 064 481 ,60 ,32 ,40 ,39	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79 7,39	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40	l/s mg/s mg/s mg/s mg/l mg/l
Rechtswert Gelände Frachten und Konzentrate Regenabflußspendkgrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30 Alkalinität 2,76	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96	200 11.7 2.0 41.4 58 10 207 7	mNN 2,00 720 064 181 ,60 ,32 ,40 ,39 ,98	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79 7,39 2,99	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00	mg/s mg/s mg/s mg/s mg/l mg/l mg/l
Rechtswert Gelände Frachten und Konzentrate Regenabflußspendkgrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30 Alkalinität 2,76 Regenabfluß QR 0,00	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94 126,05	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96 151,32	200 11.7 2.0 41.4 58 10 207 7 2 153	mNN 2,00 720 064 181 ,60 ,32 ,40 ,39 ,98 ,05	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79 7,39 2,99 153,05	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99 153,05	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99 153,05	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00 153,05	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00 153,05	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00 153,05	I/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l I/s
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendkgrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30 Alkalinität 2,76 Regenabfluß QR 0,00 Mischwasserabfluß QM 46,95	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94 126,05 173,01	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96 151,32 198,27	200 11.7 2.0 41.4 58 10 207 7 2 153 200	mNN 2,00 720 064 181,60 ,32 ,40 ,39 ,98 ,05	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79 7,39 2,99 153,05 200,00	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99 153,05 200,00	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99 153,05 200,00	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00 153,05 200,00	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00 153,05 200,00	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00 153,05 200,00	l/s mg/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l l/s
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendegrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 PH-Wert 7,30 Alkalinität 2,76 Regenabfluß QR 0,00 Mischwasserabfluß QM 46,95 Abflußfracht BSB5 235	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94 126,05 173,01 865	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96 151,32 198,27 991	200 11.7 2.0 41.4 58 10 207 7 2 153 200	mNN 2,00 720 064 181,60 ,32 ,40 ,39 ,98 ,05 ,00	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79 7,39 2,99 153,05 200,00 1.000	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99 153,05 200,00 1.000	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99 153,05 200,00 1.000	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00 153,05 200,00 1.000	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00 153,05 200,00 1.000	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00 153,05 200,00 1.000	mg/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l l/s l/s mg/s
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendeqrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30 Alkalinität 2,76 Regenabfluß QR 0,00 Mischwasserabfluß QM 46,95 Abflußfracht BSB5 235 NH4-N 235 AFS 470	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94 126,05 173,01 865 865	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96 151,32 198,27	200 11.7 2.0 41.4 58 10 207 7 2 153 200 1.0	mNN 2,000 720 064 181,60 ,32 ,40 ,39 ,98 ,05 ,00 000	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79 7,39 2,99 153,05 200,00	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99 153,05 200,00	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99 153,05 200,00 1.000	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00 153,05 200,00 1.000	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00 153,05 200,00	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00 153,05 200,00	I/s mg/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l l/s l/s mg/s
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendeqrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14,225 NH4-N 2,525 AFS 17,782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30 Alkalinität 2,76 Regenabfluß QR 0,00 Mischwasserabfluß QM 46,95 Abflußfracht BSB5 235 NH4-N 235 AFS 470 AbflußkonzentratiorBSB5 5,00	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94 126,05 173,01 865 865 1.730 5,00	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96 151,32 198,27 991	200 11.7 2.0 41.4 58 10 207 7 2 153 200 1.0 2.0 5	mNN 2,00 720 064 881 ,60 ,32 ,40 ,39 ,98 ,05 ,00 000 000 ,00	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79 7,39 2,99 153,05 200,00 1.000	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99 153,05 200,00 1.000 1.000 2.000 5,00	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99 153,05 200,00 1.000 2.000 5,00	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00 153,05 200,00 1.000 1.000 2.000 5,00	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00 153,05 200,00 1.000	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00 153,05 200,00 1.000 1.000	mg/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l l/s l/s mg/s
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendkqrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30 Alkalinität 2,76 Regenabfluß QR 0,00 Mischwasserabfluß QM 46,95 Abflußfracht BSB5 235 NH4-N 235 AFS 470 AbflußkonzentratiorBSB5 5,00 NH4-N 5,00	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94 126,05 173,01 865 865 1.730 5,00 5,00	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96 151,32 198,27 991 1.983 5,00 5,00	2000 11.7 2.C 41.4 588 207 7 2 153 200 1.C 2.C 5.5 5	mNN 2 ,000 720 064 881 ,600 ,322 ,400 ,399 ,988 ,055 ,000 0000 0000 0000 ,000 ,000	4 200,00 8.563 1.663 38.758 42,82 193,79 7,39 2,99 153,05 200,00 1.000 1.000 2.000 5,00	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99 153,05 200,00 1.000 1.000 2.000 5,00	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99 153,05 200,00 1.000 2.000 5,00	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00 153,05 200,00 1.000 2.000 5,00 5,00	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00 153,05 200,00 1.000 2.000 5,00 5,00	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00 153,05 200,00 1.000 1.000 2.000 5,00 5,00	l/s mg/s mg/s mg/s mg/s mg/l mg/l
Rechtswert Gelände Frachten und Konzentrate Regenabflußspendkqrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30 Alkalinität 2,76 Regenabfluß QR 0,00 Mischwasserabfluß QM 46,95 Abflußfracht BSB5 235 NH4-N 235 AFS 470 AbflußkonzentratiorBSB5 5,00 NH4-N 5,00 AFS 10,00	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94 126,05 173,01 865 865 1.730 5,00 5,00 10,00	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96 151,32 198,27 991 1.983 5,00 5,00	200 11.7 2.C. 41.4 588 100 207 7 2 153 200 1.C. 2.C. 5 5	mNN 2 ,000 720 064 181 ,600 ,332 ,400 ,399 ,988 ,055 ,000 0000 0000 ,000 ,000 ,000 ,0	4 200,00 8.563 1.663 38.758 42,82 8,32 193,79 2,99 153,05 200,00 1.000 2.000 5,00 10,00	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99 153,05 200,00 1.000 1.000 5,00 5,00 10,00	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99 153,05 200,00 1.000 1.000 2.000 5,00 5,00	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00 153,05 200,00 1.000 1.000 2.000 5,00 5,00	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00 153,05 200,00 1.000 1.000 2.000 5,00 10,00	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00 153,05 200,00 1.000 2.000 5,00 5,00 10,00	l/s mg/s mg/s mg/s mg/s mg/s mg/l mg/l - mmol/l l/s l/s mg/s mg/s mg/s mg/s mg/l mg/l mg/l
Rechtswert Gelände Frachten und Konzentrat Regenabflußspendeqrab 0 Mischwasserzufluß QM 46,95 Zuflußfracht BSB5 14.225 NH4-N 2.525 AFS 17.782 ZuflußkonzentrationBSB5 302,96 NH4-N 53,78 AFS 378,70 pH-Wert 7,30 Alkalinität 2,76 Regenabfluß QR 0,00 Mischwasserabfluß QM 46,95 Abflußfracht BSB5 235 NH4-N 235 AFS 470 AbflußkonzentratiorBSB5 5,00 NH4-N 5,00	Gel ionen 0,5 173,01 20.990 3.150 45.230 121,32 18,21 261,43 7,37 2,94 126,05 173,01 865 865 1.730 5,00 5,00	1 198,27 16.842 2.703 45.652 84,94 13,64 230,25 7,38 2,96 151,32 198,27 991 1.983 5,00 5,00	200 11.7 2.C. 41.4 588 100 207 7 2 2 153 200 1.C. 2.C. 5 5 5	mNN 2 ,000 720 064 881 ,600 ,322 ,400 ,399 ,988 ,055 ,000 0000 0000 0000 ,000 ,000	4 200,00 8.563 1.663 38.758 42,82 193,79 7,39 2,99 153,05 200,00 1.000 1.000 2.000 5,00	8 200,00 6.810 1.439 37.257 34,05 7,19 186,28 7,40 2,99 153,05 200,00 1.000 1.000 2.000 5,00	16 200,00 5.864 1.316 36.453 29,32 6,58 182,27 7,40 2,99 153,05 200,00 1.000 2.000 5,00	32 200,00 5.342 1.246 36.017 26,71 6,23 180,09 7,40 3,00 153,05 200,00 1.000 2.000 5,00 5,00	64 200,00 5.028 1.202 35.764 25,14 6,01 178,82 7,40 3,00 153,05 200,00 1.000 2.000 5,00 5,00	200,00 4.813 1.169 35.599 24,07 5,85 177,99 7,40 3,00 153,05 200,00 1.000 2.000 5,00 10,00 7,00	l/s mg/s mg/s mg/s mg/s mg/s mg/l mg/l - mmol/l l/s l/s mg/s mg/s mg/s mg/s mg/l mg/l mg/l

	-	
b-a-u	ina.aes	.mbH

Rothenburg o.d.T Prognosezustand Projekt-Nummer: Auftraggeber: 2 Stadt Rothenburg o.d.T.

Regenüberlaufbecken

RUB.1													
Trockenwe	tterabflu	uss	Tagesmi	ttel	Zulauf		Ablauf	Abschlag					
Einwohnerzahl			EZ	2	23.263		23.263	0	E				
häuslicher Schmu			Qh24		35,56		35,56	0,00					
gewerblicher Schr		abfluss	Qg24		0,00		0,00	0,00					
Schmutzwasseral			Qs24		35,56		35,56	0,00					
Fremdwasserabflu Trockenwetterabfl			Qf24 Qt24		11,39 46,95		11,39 46,95	0,00 0,00					
Hockenwellerabii	uss		Tagessp	itz⊖	40,93		40,93	0,00	1/5				
häuslicher Schmu	tzwasserabf	luss	Qhx	1120	69,67		69,67	0.00	l/s				
gewerblicher Schr			Qgx		0,00		0,00	0,00					
Schmutzwasseral	ofluss		Qsx		69,67		69,67	0,00	l/s				
Trockenwetterabfl			Qtx		81,06		81,06	0,00	l/s				
Regenwette	erabflus	S			Zulauf		Ablauf	Abschlag					
unabgeminderter		SS	Qr15		27,60		0,00	0,00					
abgeminderter Re			Qr		227,60		0,00	0,00					
unabminderbarar	Regenabilus	SS	uQr		34,94		136,65	225,88					
längste Fliesszeit maßgebliche Flies	ezoit		LTf Tf		24,00 19,00		124,00 0,00	0,00 0,00	min min				
Zeitbeiwert	JO2011		PHI	1	1,00		1,00	1,00	-				
Regenabfluss aus	Trennsyste	m	QrT24		16,39		16,39	0,00					
Einzugsgel					Zulauf		Ablauf	Abschlag					
Einzugsgebietsflä			AE		4,49		0,00	0.00	ha				
g-g-2.0101ld			Sum AE	5	524,29		524,29	0,00	ha				
undurchlässige Fl	äche		Au		1,57		0,00	0,00	ha				
			Sum Au	2	239,18		239,18	0,00					
mittlere Geländen		pe	NGm		2,29		2,29	0,00	-				
Nachweis A	A128												
Drosselabfluß			QD		200,00			Auslastungs		anlage	n	2,71	-
Regenabfluss 24-			Qr24	1	36,65			Einflusswer			ah	-0,09	
Regenabflußspen Trockenwetter-Ab			qr qt		0,57 0,20	,		Jahresniede TW-Konzent	0		ah ac	1,00	
mittl. Regenabflus	•	tuna	Qre	1.0)22,02			Kanalablage			aa	0,38	
mittleres Mischver		9	m		22,12			xa-Wert Kan	•	ungen	ха	13,90	
erforderliches Mis	chverhältnis		m_erf		7,00			Fließzeit-Abı	minderung	9	af	0,89	-
zulässige Entlastu			e0		56,37		,	CSB-Konze		n			
spezifisches Spei		1	VS		15,79	m^3		Trockenwett			ct		mg/l
erforderl. Speiche Summe erforderl.		uman	V Sum V		250,70 777,85			Regenwasse Bemessung	er		cr cb		mg/l mg/l
vorhandenes Spe	•		VOL		17,03			Entlastung			се		mg/l
max. Klärüberlauf		••	maxQKÜ		14,00			Lindotarig				100,00	9/.
kritischer Regena	bfluss		Qrkrit		23,57	l/s							
kritischer Mischwa	asserabfluss		Qkrit	2	220,21	-							
Lage													
Rechtswert			RW		0,00			Hochwert	HW		0,00	-	
Gelände			Gel		0,00	mNI	N	Strasse					
Frachten u													
Regenabflußspen		0	0,5	1		2	4		16	32	64	128	
Mischwasserzuflu		46,95		198,27	201		204,57	210,86	223,43	248,57	298,86	399,44	
Zuflußfracht	BSB5 NH4-N	14.225 2.525	20.990 3.150	16.842 2.703	11.8	804 079	8.759 1.701	7.180 1.517	6.551 1.470	6.640 1.549	7.513 1.796	9.613 2.336	
	AFS	17.782		45.652	41.7		39.645		40.724	44.765	53.442	71.098	
Zuflußkonzentration		302,96	121,32	84,94		3,60	42,82	34,05	29,32	26,71	25,14	24,07	mg/l
	NH4-N	53,78	18,21	13,64	10	,32	8,32	7,19	6,58	6,23	6,01	5,85	mg/l
	AFS	378,70	261,43	230,25	207	,40	193,79	186,28	182,27	180,09	178,82	177,99	
	pH-Wert	7,30	7,37	7,38		7,39	7,39		7,40	7,40	7,40	7,40	- mmol/l
Regenabfluß	Alkalinität QR	2,76 0,00	2,94 126,05	2,96 151,32	153	2,98 3.05	2,99 153,05		2,99 153,05	3,00 153,05	3,00 153,05	3,00 153,05	
Mischwasserabflu		46,95		198,27	200		200,00		200,00	200,00	200,00	200,00	
Abflußfracht	BSB5	14.225	20.990	16.842	11.7	720	8.563	6.810	5.864	5.342	5.028	4.813	mg/s
	NH4-N	2.525	3.150	2.703	2.0	064	1.663	1.439	1.316	1.246	1.202	1.169	mg/s
Al-fluid.	AFS	17.782	45.230	45.652	41.4		38.758		36.453	36.017	35.764	35.599	
Abflußkonzentrati	or <u>BSB5</u> NH4-N	302,96 53.78	121,32	84,94 13,64		3,60	42,82		29,32	26,71	25,14 6,01	24,07 5,85	mg/l
	AFS	53,78 378,70	18,21 261,43	230,25	207),32 ' 40	8,32 193,79		6,58 182,27	6,23 180,09	178,82	5,85 177,99	
	pH-Wert	7,30	7,37	7,38	7	,40 ,39	7,39		7,40	7,40	7,40	7,40	
	Alkalinität	2,76	2,94	2,96		2,98	2,99		2,99	3,00	3,00		mmol/l
	7 tilla												

b-a-u ing.ges.mbH

Rothenburg o.d.T	Projekt-Nummer:	2
Prognosezustand	Auftraggeber:	Stadt Rothenburg o.d.T.

Regenüberlaufbecken

RUB.2 Trockenwer	ttorahfli	166	Tagesmit	tel Zulau	f Abla	uf Abschla	9				
Einwohnerzahl	terabili	133	EZ	1.757	7 1.75) E				
häuslicher Schmut	tzwasserabf	luss	Qh24	2,75) I/s				
gewerblicher Schn			Qg24	0,00							
Schmutzwasserab			Qs24	2,75							
Fremdwasserabflu	ISS		Qf24	0,86	6,0	36 0,0)				
Trockenwetterabflu	uss		Qt24	3,61	1 3,6	61 0,0) I/s				
			Tagesspir	ze							
häuslicher Schmut	tzwasserabf	luss	Qhx	5,07	7 5,0	0,0)				
gewerblicher Schn	nutzwassera	abfluss	Qgx	0,00) I/s				
Schmutzwasserab			Qsx	5,07							
Trockenwetterabflu			Qtx	5,93							
Regenwette	erabflus	S		Zulau	f Abla	uf Abschla	9				
unabgeminderter F		s	Qr15	1.827,46) I/s				
abgeminderter Re	genabfluss		Qr	1.827,46) I/s				
unabminderbarar f	Regenabflus	S	uQr	0,00							
längste Fliesszeit			LTf	7,70							
maßgebliche Flies	szeit		Tf	7,70							
Zeitbeiwert	Troppositet	m	PHI OrT24	1,00							
Regenabfluss aus	-	111	QrT24	2,01 Zulau							
Einzugsgeb						,	•				
Einzugsgebietsfläd	che		AE	32,66							
one alone de la company	٠ ـ ا ـ ـ ا		Sum AE	32,66							
undurchlässige Flä	acne		Au Sum Au	14,04							
mittlere Geländene	eiaunaearun	ne	NGm	14,04 2,58			0 ha 0 -				
Nachweis A		pe	NOIII	2,00) <u> </u>	0,0	J -				
Drosselabfluß	1720		QD	15,00) 1/c	Auglacture	swert Klära	nlago	n	2,79 -	
Regenabfluss 24-h	n_Mittel		Qr24	9,39		Einflussw		illaye	11	2,19 -	'
Regenabflußspend			qr	0,67	. ,	Jahresnied			ah	-0.09 -	
Trockenwetter-Abf			qt	0,26	, ,	TW-Konze			ac	1,00 -	
mittl. Regenabflus		tuna	Qre	69,59		Kanalablag			aa	0,28 -	
mittleres Mischver		3	m	19,85			nalablagerı	ıngen	xa	14,60 -	
erforderliches Misc	chverhältnis		m_erf	7,00) -		bminderung		af	0,96 -	
zulässige Entlastu			e0	56,10) %	CSB-Konz	entratione	า			
spezifisches Speid	hervolumen	1	VS		3 m^3/ha	Trockenwe	tter		ct		ng/l
erforderl. Speicher			V		2 m^3	Regenwas			cr		ng/l
Summe erforderl.			Sum V		2 m^3	Bemessun	g		cb		ng/l
vorhandenes Spei	cnervolumei	n	VOL	- ,) m^3	Entlastung			ce	135,96 r	ng/l
max. Klärüberlauf	fluco		maxQKÜ Qrkrit	4.400,00 210,66							
kritischer Regenat kritischer Mischwa			Qkrit	210,00) 1/5						
	33014011433			214 26							
Lage			QKIII	214,26							
Doobtowart					5 -	Haaburart	1.11/4/		0.00		
Rechtswert Gelände			RW	0,00	S -) -	Hochwert Strasse	HW		0,00	-	
Gelände	nd Kons	ontrot	RW Gel	0,00	5 -	Hochwert Strasse	HW		0,00	-	
Gelände Frachten un			RW Gel ionen	0,00 0,00	6 -) -) mNN	Strasse		22		- 129	/(e*ha\
Gelände Frachten un Regenabflußspend	deqrab	0	RW Gel ionen 0,5	0,00 0,00	3 -) -) mNN	Strasse 4 8	16	32 455.02	64		<u>l/(s*ha)</u>
Gelände Frachten ur Regenabflußspend Mischwasserzufluß	deqrab 3 QM	0 3,61	RW Gel ionen 0,5 12,64	0,00 0,00 1 19,66 3	6 - 0 - 0 mNN 2 3,70 61	Strasse 4 8 ,79 117,96	16 230,31	455,02	64 904,42	1.803,22	l/s
Gelände Frachten un Regenabflußspend	deqrab 3 QM BSB5	3,61 1.098	RW Gel ionen 0,5 12,64 1.575	0,00 0,00 1 19,66 3 1.730 2	3 - 0 mNN 2 3,70 61	Strasse 4 8 ,79 117,96 660 3.900	16 230,31 6.379	455,02 11.338	64 904,42 21.256	1.803,22 41.092	l/s mg/s
Gelände Frachten un Regenabflußspend Mischwasserzufluf Zuflußfracht	deqrab 3 QM BSB5 NH4-N AFS	0 3,61	RW Gel 50nen 0,5 12,64 1.575 245	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7	2 3,70 61 .040 2.6 361 5	Strasse 4 8 ,79 117,96 660 3.900 616 826	16 230,31 6.379 1.446 41.746	455,02	64 904,42	1.803,22	l/s
Gelände Frachten ur Regenabflußspend Mischwasserzufluß	deqrab 3 QM BSB5 NH4-N AFS	3,61 1.098 195	RW Gel 	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6	2 3,70 61 .040 2.6 .033 11.9 .0,53 43	Strasse 4 8 ,79 117,96 ,660 3.900 ,616 826 ,992 21.910	16 230,31 6.379 1.446	455,02 11.338 2.685 81.417 24,92	64 904,42 21.256 5.165	1.803,22 41.092 10.124	l/s mg/s mg/s
Gelände Frachten un Regenabflußspend Mischwasserzufluf Zuflußfracht	BSB5 NH4-N AFS NH4-N NH4-N	0 3,61 1.098 195 1.373 304,44 54,04	RW Gel 5000000000000000000000000000000000000	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1	2 3,70 61 .040 2.6 .033 11.9 .0,53 43 0,71 8	Strasse 4 8 ,79 117,96 ,660 3.900 ,616 826 ,992 21.910 ,05 33,06 ,35 7,00	16 230,31 6.379 1.446 41.746 27,70 6,28	455,02 11.338 2.685 81.417 24,92 5,90	64 904,42 21.256 5.165 160.760 23,50 5,71	1.803,22 41.092 10.124 319.445 22,79 5,61	mg/s mg/s mg/s mg/l mg/l
Gelände Frachten un Regenabflußspend Mischwasserzufluf Zuflußfracht	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS	0 3,61 1.098 195 1.373 304,44 54,04 380,55	RW Gel 500000 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 2	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20	2 3,70 61 .040 2.6 .033 11.9 .0,53 43 0,71 8	Strasse 4 8 ,79 117,96 660 3.900 516 826 992 21.910 ,05 33,06 ,35 7,00 ,08 185,73	16 230,31 6.379 1.446 41,746 27,70 6,28 181,25	455,02 11.338 2.685 81.417 24,92 5,90 178,93	64 904,42 21.256 5.165 160.760 23,50 5,71 177,75	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15	mg/s mg/s mg/s mg/l mg/l
Gelände Frachten un Regenabflußspend Mischwasserzufluf Zuflußfracht	BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30	RW Gel 5000000000000000000000000000000000000	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38	2 3,70 61 .040 2.6 361 5 .033 11.9 0,53 43 0,71 8 8,69 194 7,39 7	Strasse 4 8 ,79 117,96 660 3.900 516 826 92 21,910 ,05 33,06 ,35 7,00 ,08 185,73 ,39 7,40	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40	64 904,42 21.256 5.165 160.760 23,50 5,71 177,75 7,40	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40	mg/s mg/s mg/s mg/l mg/l
Gelände Frachten un Regenabflußspend Mischwasserzufluß Zuflußfracht Zuflußkonzentration	degrab 3 QM BSB5 NH4-N AFS DNBSB5 NH4-N AFS PH-Wert Alkalinität	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76	RW Gel 5000000000000000000000000000000000000	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96	2 3,70 61 .040 2.6 361 5 .033 11.9 0,53 43 0,71 8 8,69 194 7,39 7 2,97 2	Strasse 4 8 ,79 117,96 ,660 3.900 ,616 826 ,992 21.910 ,05 33,06 ,05 33,06 ,05 185,73 ,39 7,40 ,99 2,99	16 230,31 6.379 1.446 41,746 27,70 6,28 181,25 7,40 3,00	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00	64 904,42 21.256 5.165 160.760 23,50 5,71 177,75 7,40 3,00	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00	mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l
Gelände Frachten un Regenabflußspenc Mischwasserzufluß Zuflußfracht Zuflußkonzentration Regenabfluß	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00	RW Gel 50nen 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 2 7,37 2,93 9,03	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1	2 3,70 61 .040 2.6 361 5 .033 11.9 0,53 43 0,71 8 8,69 194 7,39 7 2,97 2	Strasse 4 8 ,79 117,96 ,600 3.900 ,616 826 ,992 21.910 ,05 33,06 ,35 7,00 ,08 185,73 ,39 7,40 ,99 2,99 ,39 11,39	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39	64 904,42 21.256 5.165 160.760 23,50 5,71 177,75 7,40 3,00 11,39	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39	I/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l I/s
Gelände Frachten un Regenabflußspene Mischwasserzufluf Zuflußfracht Zuflußkonzentration Regenabfluß Mischwasserabfluß	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR 3 QM	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00 3,61	RW Gel 5000000000000000000000000000000000000	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1 15,00 1	2 3,70 61 .040 2.6 361 5 .033 11.9 0,53 43 0,71 8 8,69 194 7,39 7 2,97 2 1,39 11 5,00 15	Strasse 4 8 ,79 117,96 ,600 3,900 ,616 826 ,992 21,910 ,05 33,06 ,35 7,00 ,08 185,73 ,39 7,40 ,99 2,99 ,39 11,39 ,00 15,00	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39 15,00	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39 15,00	64 904,42 21.256 5.165 160.760 23,50 5,71 177,75 7,40 3,00 11,39 15,00	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39 15,00	l/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l l/s l/s
Gelände Frachten un Regenabflußspene Mischwasserzufluß Zuflußfracht Zuflußkonzentration Regenabfluß	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR 3 QM BSB5	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00 3,61 1.098	RW Gel ionen 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 2,737 2,93 9,03 12,64 1.575	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1 15,00 1	2 3,70 61 .040 2.6 361 5 .033 11.5 0,53 43 0,71 8 8,69 194 7,39 7 2,97 2 1,39 11 5,00 15 908 6	Strasse 4 8 ,79 117,96 ,600 3.900 ,616 826 ,992 21.910 ,05 33,06 ,35 7,00 ,08 185,73 ,39 7,40 ,99 2,99 ,39 11,39 ,00 15,00 ,46 496	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39 15,00 415	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39 15,00 374	64 904,42 21.256 5.165 160.760 23,50 5,71 177,75 7,40 3,00 11,39 15,00 353	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39 15,00 342	l/s mg/s mg/s mg/s mg/l mg/l mg/l
Gelände Frachten un Regenabflußspene Mischwasserzufluf Zuflußfracht Zuflußkonzentration Regenabfluß Mischwasserabfluß	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR 3 QM BSB5 NH4-N	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00 3,61 1.098 195	RW Gel 5000 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 2,7,37 2,93 9,03 12,64 1.575 245	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1 15,00 1 1,320 216	2 3,70 61 .040 2.6 .033 11.9 .0,53 43 0,71 8 8,69 194 7,39 7 2,97 2 1,39 11 5,00 15 908 6 161	Strasse 4 8 4,79 117,96 660 3,900 616 826 992 21,910 ,05 33,06 ,35 7,00 ,08 185,73 ,39 7,40 ,99 2,99 ,00 15,00 ,46 496 ,25 105	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39 15,00 415 94	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39 15,00 374 89	64 904,42 21,256 5,165 160,760 23,50 5,71 177,75 7,40 3,00 11,39 15,00 353 86	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39 15,00 342 84	l/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l l/s l/s mg/s mg/s
Gelände Frachten un Regenabflußspene Mischwasserzufluf Zuflußfracht Zuflußkonzentratio Regenabfluß Mischwasserabfluß Abflußfracht	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR 3 QM BSB5 NH4-N AFS	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00 3,61 1.098 195 1.373	RW Gel 5000 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 7,37 2,93 9,03 12,64 1.575 245 3.314	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1 15,00 1 1.320 216 3.475 3	2 3,70 61 .040 2.6 .033 11.9 .0,53 43 .0,71 8 .8,69 194 .7,39 7 2,97 2 1,39 11 .5,00 15 .908 6 .161 1	Strasse 4 8 4,79 117,96 660 3,900 616 826 92 21,910 ,05 33,06 ,35 7,00 ,08 185,73 ,39 7,40 ,99 2,99 ,00 15,00 346 496 25 105 211 2,786	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39 15,00 415 94 2.719	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39 15,00 374 89 2.684	64 904,42 21,256 5,165 160,760 23,50 5,71 177,75 7,40 3,00 11,39 15,00 353 86 2,666	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39 15,00 342 84 2.657	mg/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l l/s l/s mg/s mg/s mg/s
Gelände Frachten un Regenabflußspene Mischwasserzufluß Zuflußfracht Zuflußkonzentration Regenabfluß Mischwasserabfluß	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR 3 QM BSB5 NH4-N AFS orBSB5	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00 3,61 1.098 195 1.373	RW Gel 5000 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 2,7,37 2,93 9,03 12,64 1.575 245 3.314 124,66	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1 15,00 1 1.320 216 3.475 3 88,01 6	2 3,70 61 .040 2.6 361 5 .033 11.9 .0,53 43 0,71 8 8,69 194 7,39 7 2,97 2 1,39 11 5,00 15 908 6 161 1 .130 2.9 0,53 43	Strasse 4 8 ,79 117,96 ,60 3,900 ,616 826 ,92 21,910 ,05 33,06 ,35 7,00 ,08 185,73 ,39 7,40 ,99 2,99 ,39 11,39 ,00 15,00 ,46 496 ,25 105 ,11 2,786 ,05 33,06	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39 15,00 415 94 2.719 27,70	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39 15,00 374 89 2.684 24,92	64 904,42 21,256 5,165 160,760 23,50 5,71 177,75 7,40 3,00 11,39 15,00 353 86 2,666 23,50	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39 15,00 342 84 2.657 22,79	I/s mg/s mg/s mg/s mg/s mg/l mg/l mg/l - mmol/l I/s I/s mg/s mg/s mg/s mg/l
Gelände Frachten un Regenabflußspenc Mischwasserzufluf Zuflußkonzentratio Regenabfluß Mischwasserabfluß Abflußfracht	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR 3 QM BSB5 NH4-N AFS orBSB5 NH4-N AFS	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00 3,61 1.098 195 1.373 304,44 54,04	RW Gel ionen 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 2,737 2,93 9,03 12,64 1.575 245 3.314 124,66 19,37	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1 15,00 1 1.320 216 3.475 3 88,01 6 14,42 1	2 3,70 61 .040 2.6 361 5 .033 11.9 0,53 43 0,71 8 8,69 194 7,39 7 2,97 2 1,39 11 5,00 15 908 6 161 1 .130 2.9 0,53 43 0,71 8	Strasse 4 8 ,79 117,96 ,600 3.900 ,616 826 ,902 21.910 ,05 33,06 ,08 185,73 ,39 7,40 ,99 2,99 ,39 11,39 ,00 15,00 ,46 496 ,25 105 ,11 2.786 ,05 33,06 ,35 7,00	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39 15,00 415 94 2.719 27,70 6,28	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39 15,00 374 89 2.684 24,92 5,90	64 904,42 21.256 5.165 160.760 23,50 5,71 177,75 7,40 3,00 11,39 15,00 353 86 2.666 23,50 5,71	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39 15,00 342 84 2.657 22,79 5,61	/s mg/s mg/s mg/s mg/s mg/s mg/l mg/l - mmol/l l/s l/s mg/s mg/s mg/s mg/s mg/l mg/l mg/l
Gelände Frachten un Regenabflußspenc Mischwasserzufluf Zuflußkonzentratio Regenabfluß Mischwasserabfluß Abflußfracht	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR 3 QM BSB5 NH4-N AFS orBSB5 NH4-N AFS orBSB5 NH4-N AFS	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00 3,61 1.098 195 1.373 304,44 54,04	RW Gel ionen 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 2,93 9,03 12,64 1.575 245 3.314 124,66 19,37 262,27 2	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1 15,00 1 1.320 216 3.475 3 88,01 6 14,42 1 31,65 20	2 3,70 61 0,040 2.6 361 5 0,033 11.9 0,53 43 0,71 8 8,69 194 7,39 7 2,97 2 1,39 11 5,00 15 908 6 161 1 1,130 2.9 0,53 43 0,71 8 8,69 194	Strasse 4 8 ,79 117,96 ,660 3.900 ,616 826 ,992 21.910 ,05 33,06 ,35 7,00 ,08 185,73 ,39 7,40 ,99 2,99 ,39 11,39 ,00 15,00 ,646 496 ,25 105 ,01 2.786 ,05 33,06 ,05 33,06 ,05 33,06 ,05 33,06 ,05 33,06 ,05 33,06	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39 15,00 415 94 2.719 27,70	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39 15,00 374 89 2.684 24,92 5,90 178,93	64 904,42 21,256 5,165 160,760 23,50 5,71 177,75 7,40 3,00 11,39 15,00 353 86 2,666 23,50	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39 15,00 342 84 2.657 22,79 5,61 177,15	I/s mg/s mg/s mg/s mg/s mg/l mg/l - mmol/l I/s I/s mg/s mg/s mg/s mg/s mg/l mg/l
Gelände Frachten un Regenabflußspenc Mischwasserzufluf Zuflußkonzentratio Regenabfluß Mischwasserabfluß Abflußfracht	degrab 3 QM BSB5 NH4-N AFS onBSB5 NH4-N AFS pH-Wert Alkalinität QR 3 QM BSB5 NH4-N AFS orBSB5 NH4-N AFS	0 3,61 1.098 195 1.373 304,44 54,04 380,55 7,30 2,76 0,00 3,61 1.098 195 1.373 304,44 54,04	RW Gel ionen 0,5 12,64 1.575 245 3.314 124,66 19,37 262,27 2,737 2,93 9,03 12,64 1.575 245 3.314 124,66 19,37	0,00 0,00 1 19,66 3 1.730 2 283 4.554 7 88,01 6 14,42 1 31,65 20 7,38 2,96 11,39 1 15,00 1 1.320 216 3.475 3 88,01 6 14,42 1 31,65 20 7,38	2 3,70 61 .040 2.6 361 5 .033 11.9 0,53 43 0,71 8 8,69 194 7,39 7 2,97 2 1,39 11 5,00 15 908 6 161 1 .130 2.9 0,53 43 0,71 8 8,69 194 7,39 7	Strasse 4 8 ,79 117,96 ,600 3.900 ,616 826 ,902 21.910 ,05 33,06 ,08 185,73 ,39 7,40 ,99 2,99 ,39 11,39 ,00 15,00 ,46 496 ,25 105 ,11 2.786 ,05 33,06 ,35 7,00	16 230,31 6.379 1.446 41.746 27,70 6,28 181,25 7,40 3,00 11,39 15,00 415 94 2.719 27,70 6,28 181,25	455,02 11.338 2.685 81.417 24,92 5,90 178,93 7,40 3,00 11,39 15,00 374 89 2.684 24,92 5,90	64 904,42 21.256 5.165 160.760 23,50 5,71 177,75 7,40 3,00 11,39 15,00 353 86 2.666 23,50 5,71	1.803,22 41.092 10.124 319.445 22,79 5,61 177,15 7,40 3,00 11,39 15,00 342 84 2.657 22,79 5,61	I/s mg/s mg/s mg/s mg/s mg/l mg/l - mmol/l I/s I/s mg/s mg/s mg/s mg/l mg/l mg/l mg/l -

Rothenburg o.d.T	Projekt-Nummer:	2
Prognosezustand	Auftraggeber:	Stadt Rothenburg o.d.T.

RUB.3													
Trockenwett	erabflu	ISS	Tagesmit	tel	Zulauf		Ablauf	Abschlag					
Einwohnerzahl	0		EZ		2.747		2.747	0	Е				
häuslicher Schmutz	wasserabfl	uss	Qh24		4,29		4,29	0,00					
gewerblicher Schmu			Qg24		0,00		0,00	0,00					
Schmutzwasserabflu			Qs24		4,29		4,29	0,00					
Fremdwasserabfluss	3		Qf24		1,60		1,60	0,00	l/s				
Trockenwetterabflus	s		Qt24		5,89		5,89	0,00	l/s				
			Tagesspi	tze									
häuslicher Schmutzv	wasserabfl	uss	Qhx		7,92		7,92	0,00	l/s				
gewerblicher Schmu	ıtzwassera	bfluss	Qgx		0,00		0,00	0,00	l/s				
Schmutzwasserabflu	uss		Qsx		7,92		7,92	0,00	l/s				
Trockenwetterabflus	s		Qtx		9,52		9,52	0,00	l/s				
Regenwetter				2	Zulauf		Ablauf	Abschlag					
unabgeminderter Re		S	Qr15		909,98		0,00	0,00	l/s				
abgeminderter Rege			Qr	3.9	909,98		0,00	0,00	l/s				
unabminderbarar Re	egenabflus	S	uQr		0,00		18,04	3.891,94	l/s				
längste Fliesszeit			LTf		8,00		8,00	0,00					
maßgebliche Fliessz	zeit		Tf		8,00		0,00	0,00					
Zeitbeiwert			PHI		1,00		1,00	1,00	-				
Regenabfluss aus T		n	QrT24		3,17		3,17	0,00	l/s				
Einzugsgebi				2	Zulauf		Ablauf	Abschlag					
Einzugsgebietsfläch			AE		71,32		0,00	0,00					
			Sum AE		71,32		71,32	0,00					
undurchlässige Fläc	he		Au		29,95		0,00	0,00					
· · · · · · · · · · · · · · · · · · ·			Sum Au		29,95		29,95	0,00					
mittlere Geländeneig		pe	NGm		2,49		2,49	0,00	-				
Nachweis A1	128												
Drosselabfluß			QD		27,10			Auslastungs		nlage	n	3,22 -	
Regenabfluss 24-h-l			Qr24		18,04			Einflusswer	te				
Regenabflußspende			qr			•	•	Jahresniede			ah	-0,09 -	
Trockenwetter-Abflu			qt		0,20	l/(s*h	na)	TW-Konzent			ac	1,00 -	
mittl. Regenabfluss		ung	Qre			l/s		Kanalablage			aa	0,31 -	
mittleres Mischverha			m		24,66	-		xa-Wert Kan			xa	14,85 -	
erforderliches Misch			m_erf		7,00	-		Fließzeit-Abı		•	af	0,96 -	•
zulässige Entlastung	gsrate		e0		60,45		,,	CSB-Konze		n			
spezifisches Speich			VS		11,63		na	Trockenwett			ct		ng/l
erforderl. Speichervo			V		348,46	m^3		Regenwasse	er		cr		ng/l
Summe erforderl. Sp			Sum V VOL		348,46			Bemessung			cb		ng/l
vorhandenes Speich max. Klärüberlauf	iervolumer	1	maxQKÜ		36,00 260,00	m^3		Entlastung			ce	131,21 r	ng/l
kritischer Regenabfl	ucc		Qrkrit		149,32								
kritischer Mischwass			Qkrit		155,21								
_	SCIADIIUSS		QKIII		100,21								
Lage			RW		0.00			Llaabuuart	LIVAZ		0.00		
Rechtswert Gelände			Gel		0,00	- mNN		Hochwert Strasse	HW		0,00	-	
	-				0,00	HIINIY	N .	Suasse					
Frachten und				4		_		•	40	00	2.	400	1//- **
Regenabflußspender Mischwasserzufluß		0 5,89	0,5	39.02	60	2	129 99		16	32	1.926,15	128 3.843,23	
	JIVI BSB5	1.717	24,04 2.576	2.907		5,97 568	128,88 4.890		488,33 12.823	967,61 23.400	44.554	86.862	l/s mg/s
	NH4-N	305	405	488		353	983		2.967	5.611	10.899	21.476	mg/s
<u>!</u>	NFS	2.146	5.924	8.568	13.8		24.434		87.896	172.512	341.744	680.208	mg/s
Zuflußkonzentration		291,47	107,16	74,50		,73	37,94		26,26	24,18	23,13	22,60	mg/l
	NH4-N	51,74	16,84	12,49	<u> </u>	,73 ,46	7,63		6,07	5,80	5,66	5,59	
	AFS	364,34		219,60	200		189,58	183,31	179,99	178,29	177,42	176,99	
	oH-Wert	7,29	7,37	7,38		7,39	7,39		7,40	7,40	7,40	7,40	
	Alkalinität	2,73	2,93	2,96		,98	2,99	2,99	3,00	3,00	3,00	3,00	
	QR	0,00	18,15	21,21		,21	21,21		21,21	21,21	21,21	21,21	I/s
Mischwasserabfluß (5,89	24,04	27,10	27	, <u>1</u> 0	27,10		27,10	27,10	27,10	27,10	
	BSB5	1.717	2.576	2.019	1.4	402	1.028		712	655	627	612	mg/s
	NH4-N	305	405	339	2	256	207		165	157	153	151	mg/s
Ī	AFS	2.146	5.924	5.951		444	5.138		4.878	4.832	4.808	4.796	mg/s
Abflußkonzentration	BSB5	291,47	107,16	74,50	51	,73	37,94		26,26	24,18	23,13	22,60	mg/l
Ī	NH4-N	51,74	16,84	12,49	9	,46	7,63	6,61	6,07	5,80	5,66	5,59	
	٩FS	364,34		219,60	200	,90	189,58	183,31	179,99	178,29	177,42	176,99	
	oH-Wert	7,29	7,37	7,38		,39	7,39	7,40	7,40	7,40	7,40	7,40	-
	Alkalinität	2,73	2,93	2,96	2	,98	2,99	2,99	3,00	3,00	3,00	3,00	mmol/l

Rothenburg o.d.T	Projekt-Nummer:	2
Prognosezustand	Auftraggeber:	Stadt Rothenburg o.d.T.

RUB.4													
Trockenwet	tterabflu	ıss	Tagesmit	tel Z	ulauf		Ablauf	Abschlag					
Einwohnerzahl			EZ	2	2.195		2.195	0	E				
häuslicher Schmut			Qh24		3,43		3,43	0,00					
gewerblicher Schn		abfluss	Qg24		0,00		0,00	0,00					
Schmutzwasserab			Qs24		3,43		3,43	0,00					
Fremdwasserabflu Trockenwetterabflu			Qf24 Qt24		0,27 3,70		0,27 3,70	0,00 0,00					
Trockenwellerabili	155		Tagesspi	t70	3,70		3,70	0,00	1/5				
häuslicher Schmut	zwasserabf	luss	Qhx	120	6,33		6,33	0.00	l/s				
gewerblicher Schn			Qgx		0,00		0,00	0,00					
Schmutzwasserab	fluss		Qsx		6,33		6,33	0,00	l/s				
Trockenwetterabflu			Qtx		6,61		6,61	0,00	l/s				
Regenwette	erabflus	S			ulauf		Ablauf	Abschlag					
unabgeminderter F		S	Qr15		5,28		0,00	0,00					
abgeminderter Reg			Qr	1.49	5,28		0,00	0,00					
unabminderbarar F längste Fliesszeit	Regenabilus	SS	uQr LTf		0,00		14,82 8,00	1.480,46 0,00	l/s min				
maßgebliche Flies	szeit		Tf		8,00		0,00	0,00	min				
Zeitbeiwert	02011		PHI		1,00		1,00	1,00	-				
Regenabfluss aus	Trennsyste	m	QrT24		0,00		0,00	0,00					
Einzugsgeb				Z	ulauf		Ablauf	Abschlag	<u> </u>		<u> </u>	<u> </u>	
Einzugsgebietsfläd			AE	1	7,33		0,00	0,00	ha				
			Sum AE	1	7,33		17,33	0,00	ha				
undurchlässige Flä	iche		Au		3,69		0,00	0,00	ha				
mittlere Geländene	oja upacar in	no	Sum Au NGm	1	3,69 2,50		13,69 2,50	0,00 0,00					
Nachweis A		pe	INGIII		2,50		2,30	0,00	-				
	1/20		OD		0.50	1/-		A			_	0.00	
Drosselabfluß Regenabfluss 24-h	_Mittel		QD Qr24		8,52	1/s 1/(s*h	a)	Auslastungs Einflusswer		ınıage	n	2,88 -	-
Regenabflußspend			gr gr	'	1,08			Jahresniede			ah	-0,09 -	_
Trockenwetter-Abf			qt		0,27	`	•	TW-Konzent	0		ac	1,08 -	
mittl. Regenabflus:	s bei Entlas	tung	Qre		35,21	l/s	,	Kanalablage	rungen		aa	0,33 -	-
mittleres Mischver			m		23,01	-		xa-Wert Kan	_	•	ха	13,46 -	
erforderliches Misc			m_erf		7,80			Fließzeit-Abı		•	af	0,96 -	-
zulässige Entlastu spezifisches Speid		,	e0 VS	5	6,48	% m^3/l	ha	CSB-Konze Trockenwett		n	ct	648,25 ।	ma/l
erforderl. Speicher		ı	V	ç		m^3	ıa	Regenwasse			cr		mg/l mg/l
Summe erforderl.		umen	Sum V			m^3		Bemessung			cb		mg/l
vorhandenes Spei	chervolume	n	VOL		30,00			Entlastung			ce	135,51	mg/l
max. Klärüberlauf			maxQKÜ		00,00								
kritischer Regenat			Qrkrit)5,36)9,06								
kritischer Mischwa	sserabiluss		Qkrit	20	19,06	-							
Lage			DW/		0.00			Lloobyyort	LIVAZ		0.00		
Rechtswert Gelände			RW Gel		0,00	- mNN		Hochwert Strasse	HW		0,00	-	
Frachten ur	nd Konz	ontrat			0,00	IIIININ		CHASSE					
Regenabflußspend		eriti at 0	0,5	1		2	4	8	16	32	64	120	l/(s*ha)
Mischwasserzufluß		3,70	10,55	17,39	31	,08	58,47	113,23	222,75	441,81	879,91	1.756,11	
Zuflußfracht	BSB5	1.372	1.979	2.130	2.4	432	3.036	4.245	6.662	11.496	21.165	40.502	
	NH4-N	244	281	319	3	395	546	848	1.452	2.661	5.078	9.912	mg/s
7 (1 0)	AFS	1.715	3.493	4.702		119	11.953	21.622	40.959	79.633	156.980	311.676	
Zuflußkonzentratio	n <u>BSB5</u> NH4-N	370,43 65,75	187,60 ² 26,66	122,46 18,34	/8	3,24 2,69	51,94 9,33	37,49 7,49	29,91 6,52	26,02 6,02	24,05 5,77	23,06 5,64	mg/l
	AFS	463,03		270,32	229	02	204,45		183,87	180,24	178,41	177,48	
	pH-Wert	7,37	7,39	7,39	7	,40	7,40	7,40	7,40	7,40	7,40	7,40	
	Alkalinität	2,93	2,97	2,98	2	2,99	3,00	3,00	3,00	3,00	3,00	3,00	mmol/l
Regenabfluß	QR	0,00	6,85	13,69		,82	14,82		14,82	14,82	14,82	14,82	
Mischwasserabfluß		3,70	10,55	17,39	18	3,52 440	18,52		18,52	18,52	18,52	18,52	
Abflußfracht	BSB5 NH4-N	1.372 244	1.979 281	2.130 319		449 235	962 173	694 139	554 121	482 112	445 107	427 105	
	AFS	1.715		4.702		233 241	3.786	3.537	3.405	3.338	3.304	3.287	
Abflußkonzentratio	orBSB5	370,43		122,46	78	3,24	51,94	37,49	29,91	26,02	24,05	23,06	mg/l
	NH4-N	65,75	26,66	18,34	12	2,69	9,33	7,49	6,52	6,02	5,77	5,64	mg/l
	. = 0	463,03	331,17 2	270,32	229	,02	204,45	190,96	183,87	180,24	178,41	177,48	
	AFS						7 10	- · · ·	- · ·	-, ··	7		
	AFS pH-Wert Alkalinität	7,37 2,93	7,39 2,97	7,39 2,98	7	7,40 2,99	7,40 3,00		7,40 3,00	7,40 3,00	7,40 3,00	7,40	- mmol/l

Rothenburg o.d.T	Projekt-Nummer:	2
Prognosezustand	Auftraggeber:	Stadt Rothenburg o.d.T.

RUB.5												
Trockenwet	terabflu	JSS	Tagesmit	tel Zula	auf	Ablauf	Abschlag					
Einwohnerzahl			EZ	4.9	944	4.944	0	Е				
häuslicher Schmut	zwasserabf	luss	Qh24		72	7,72	0,00					
gewerblicher Schm			Qg24		,00	0,00	0,00					
Schmutzwasserab	fluss		Qs24	7,	,72	7,72	0,00	l/s				
Fremdwasserabflu	ss		Qf24		,31	1,31	0,00	l/s				
Trockenwetterabflu	uss		Qt24		,03	9,03	0,00	l/s				
			Tagesspi	tze								
häuslicher Schmut			Qhx	14,		14,26	0,00					
gewerblicher Schm		abfluss	Qgx		,00	0,00	0,00					
Schmutzwasserab			Qsx	14,		14,26	0,00					
Trockenwetterabflu			Qtx	15, Zula		15,57 Ablauf	0,00 Abschlag	l/s				
Regenwette							_					
unabgeminderter F		S	Qr15	4.952,		0,00	0,00					
abgeminderter Reg			Qr	4.952,		0,00	0,00					
unabminderbarar F	Regenabflus	SS	uQr		,00	27,89	4.924,69	l/s				
längste Fliesszeit	o-oit		LTf		,80	9,80	0,00	min				
maßgebliche Flies Zeitbeiwert	szeit		Tf PHI		,80 ,00	0,00 1,00	0,00 1,00	min				
Regenabfluss aus	Tranneveta	m	QrT24		,00	0,08	0,00	- l/s				
		111	QIIZ4	Zula		Ablauf	Abschlag	1/3				
Einzugsgeb			• =				ŭ					
Einzugsgebietsfläc	ne		AE	71,		0,00	0,00					
undurchlässies Fla	ioho		Sum AE	71,		71,05	0,00	ha				
undurchlässige Flä	acne		Au Sum Au	42,		0,00 42,63	0,00 0,00	ha				
mittlere Geländene	eiaunasarun	ne	NGm	42,	,03	2,30	0,00					
		pe	NOIII	Ζ,	,50	2,30	0,00					
Nachweis A	1720					.,						
Drosselabfluß	N 4144 - 1		QD		,00		Auslastungs		anlage	n	2,50	-
Regenabfluss 24-h			Qr24			l/(s*ha)	Einflusswei			ah	0.00	
Regenabflußspend Trockenwetter-Abf			qr at		,05 ,21	l/(s*ha) l/(s*ha)	Jahresniede TW-Konzent			ah ac	-0,09 · 1,00 ·	
mittl. Regenabfluss		tuna	qt Qre	207,			Kanalablage			ac aa	0,37	
mittleres Mischverl		turig	m			-	xa-Wert Kan	alablader	ungen	ха	13,92	
erforderliches Misc			m erf		,00	_	Fließzeit-Ab			af	0,96	
zulässige Entlastu			e0		49	%	CSB-Konze		_		-,	
spezifisches Speic		1	VS	12,	,96	m^3/ha	Trockenwett	er		ct	598,58	mg/l
erforderl. Speicher			V	552,	,36	m^3	Regenwasse	er		cr	107,00	mg/l
Summe erforderl.			Sum V			m^3	Bemessung			cb	762,97	mg/l
vorhandenes Speid	chervolume	n	VOL	919,		m^3	Entlastung			ce	134,36	mg/l
max. Klärüberlauf	.e		maxQKÜ	6.640,								
kritischer Regenab			Qrkrit	639,								
kritischer Mischwa	SSELADIIUSS		Qkrit	648,	,40	-						
Lage				_								
Rechtswert			RW		,00		Hochwert	HW		0,00	-	
Gelände			Gel	0,	,00	mNN	Strasse					
Frachten ur	nd Konz	entrat	tionen									
Regenabflußspend		0	0,5	1		2 4		16	32	64		l/(s*ha)
Mischwasserzufluß		9,03	30,43	51,74	94,			691,19	1.373,27	2.737,43	5.465,75	
Zuflußfracht	BSB5	3.090	4.692	5.163	6.1			19.275	34.328	64.433	124.644	
	NH4-N	548	666	784	1.0			4.312	8.075	15.602	30.654	
Zuflußkonzentratio	AFS nRSR5	3.863 342,04		2.815 99,78	20.3 64,			125.711 27,89	246.134 25,00	486.979 23,54	968.668 22,80	mg/s
Zunuskonzentiallo	NH4-N	60,71	21,91	15,15	10,			6,24	5,88	5,70	5,61	mg/l mg/l
	AFS	427,56			215,			181,88	179,23	177,90	177,23	
	pH-Wert	7,34	7,38	7,39		39 7,40		7,40	7,40	7,40	7,40	
	Alkalinität	2,86	2,96	2,97		99 2,99		3,00	3,00	3,00	3,00	
Regenabfluß	QR	0,00		27,97	27,	97 27,9		27,97	27,97	27,97	27,97	
Mischwasserabfluß		9,03	30,43	37,00	37,			37,00	37,00	37,00	37,00	
Abflußfracht	BSB5	3.090	4.692	3.692	2.3			1.032	925	871	844	mg/s
	NH4-N	548	666	561		.00 30		231	218	211	208	
A1 (1 (C)	AFS	3.863		9.164	7.9			6.729	6.632	6.582	6.557	
Abflußkonzentratio		342,04		99,78	64,		33,55	27,89	25,00	23,54	22,80	
	NH4-N	60,71	21,91	15,15	10,			6,24	5,88	5,70	5,61	
	AFS nH_Wert	427,56			215 <u>,</u>			181,88	179,23	177,90	177,23 7,40	
	pH-Wert Alkalinität	7,34 2,86	7,38 2,96	7,39 2,97		39 7,40 99 2,99		7,40 3,00	7,40 3,00	7,40 3,00	3,00	
										0.00	0,00	

h-a-II	ina.aes	s mhH

Rothenburg o.d.T Prognosezustand Projekt-Nummer: Auftraggeber: 2 Stadt Rothenburg o.d.T.

Regenüberlaufbecken

RUB.6													
Trockenwett	erabflu	ISS	Tagesmit	tel	Zulauf		Ablauf	Abschlag					
Einwohnerzahl			EZ		8.013		8.013		E				
häuslicher Schmutz			Qh24		12,20		12,20	0,00					
gewerblicher Schmu		ıbfluss	Qg24		0,00		0,00	0,00					
Schmutzwasserabfl			Qs24		12,20		12,20	0,00					
Fremdwasserabflus			Qf24		4,74		4,74	0,00					
Trockenwetterabflus	SS		Qt24 Tagesspi	170	16,94		16,94	0,00	I/S				
häuslicher Schmutz	wasserabfl	luss	Qhx	26	23,70		23,70	0.00	l/s				
gewerblicher Schmu			Qgx		0,00		0,00	0,00					
Schmutzwasserabfle			Qsx		23,70		23,70	0,00					
Trockenwetterabflus	SS		Qtx		28,43		28,43	0,00	l/s				
Regenwetter	rabflus	S			Zulauf		Ablauf	Abschlag					
unabgeminderter Re		S	Qr15		54,44		0,00	0,00					
abgeminderter Rege			Qr		128,26		0,00	0,00					
unabminderbarar Re	egenabilus	S	uQr	1	161,24		44,08	5.545,42					
längste Fliesszeit	zoit		LTf Tf		36,00 26,00		36,00 0,00	0,00 0,00					
maßgebliche Fliess: Zeitbeiwert	zeit		PHI		0,96		1,00	1,00					
Regenabfluss aus T	rennsvster	m	QrT24		9,48		9,48	0,00					
Einzugsgebi					Zulauf		Ablauf	Abschlag					
Einzugsgebietsfläch			AE	1	101,16		0,00	0.00	ha				
5-5			Sum AE		236,73		236,73	0,00					
undurchlässige Fläc	he		Au		45,52		0,00	0,00	ha				
			Sum Au	1	105,57		105,57	0,00					
mittlere Geländenei		pe	NGm		2,24		2,24	0,00	-				
Nachweis A	128		0.5			.,							
Drosselabfluß	Mittal		QD Qr24		70,50		۱۵۱	Auslastungs		aniage	n	2,78	-
Regenabfluss 24-h-Regenabflußspende					44,08	1/(s 1 1/(s*h		Einflusswei Jahresniede			ah	-0,09	
Trockenwetter-Abflu			qr qt			1/(s t 1/(s*h	•	TW-Konzent	_		ah ac	1,00	
mittl. Regenabfluss		tuna	Qre	4	105,11	1/(3 i	ia)	Kanalablage			aa	0,38	
mittleres Mischverha		3	m		24,48	-		xa-Wert Kan		ungen	ха	14,30	
erforderliches Misch	nverhältnis		m_erf		7,00	-		Fließzeit-Ab			af	0,89	
zulässige Entlastung	gsrate		e0		58,68	%		CSB-Konze	ntratione	en			
spezifisches Speich		1	VS		17,77		ha	Trockenwett			ct		mg/l
erforderl. Speicherv			V		155,34	m^3		Regenwasse	er		cr		mg/l
Summe erforderl. S	•		Sum V VOL		375,53 335,00	m^3 m^3		Bemessung			cb		mg/l
vorhandenes Speich max. Klärüberlauf	leivolulliei	ı	maxQKÜ		00,00	l/s		Entlastung			ce	133,05	mg/l
kritischer Regenabfl	luss		Qrkrit		82,83								
kritischer Mischwass			Qkrit		362,51	-							
Lage													
Rechtswert			RW		0,00	-		Hochwert	HW		0,00	-	
Gelände			Gel		0,00	mNN	l	Strasse					
Frachten und	d Konz	entrat	tionen										
Regenabflußspende		0	0,5	1		2	4		16	32	64	128	
Mischwasserzufluß		16,94	69,27	98,94	147		245,56		832,06	1.614,06	3.101,07	6.014,48	
	BSB5	4.880	6.966	7.013		373	9.128		21.747	38.949	71.665	135.880	
	NH4-N AFS	866 6.100	1.085 16.718 2	1.180 1.407	1.3 29.3	364	1.855 46.300		5.052 149.560	9.360 287.574	17.549	33.611 1.064.354	
		288,16	10.718 2	70,88		,88	37,17	29,99	26,14	24,13	23,11	22,59	
7uflukkonzentration			15,66	11,92	9	,23	7,55		6,07	5,80	5,66	5,59	mg/l
Zuflußkonzentration		ວາ. ເວ			198		188,55		179,75	178,17	177,37	176,97	
	NH4-N AFS	51,15 360,20		216,37			7.20	7.40	7,40	7,40		7,40	-
<u>.</u>	NH4-N AFS pH-Wert	360,20 7,28	241,34 2 7,37	216,37 7,38	7	,39	7,39				7,40		
	NH4-N AFS pH-Wert Alkalinität	360,20 7,28 2,72	241,34 2 7,37 2,94	7,38 2,96	7	,98	2,99	2,99	3,00	3,00	3,00	3,00	mmol
Regenabfluß	NH4-N AFS pH-Wert Alkalinität QR	360,20 7,28 2,72 0,00	241,34 2 7,37 2,94 52,34	7,38 2,96 53,56	7 2 53	,98 ,56	2,99 53,56	2,99 53,56	3,00 53,56	3,00 53,56	3,00 53,56	3,00 53,56	l/s
Regenabfluß Mischwasserabfluß	NH4-N AFS pH-Wert Alkalinität QR QM	360,20 7,28 2,72 0,00 16,94	241,34 2 7,37 2,94 52,34 69,27	7,38 2,96 53,56 70,50	7 2 53 70	,98 ,56 ,50	2,99 53,56 70,50	2,99 53,56 70,50	3,00 53,56 70,50	3,00 53,56 70,50	3,00 53,56 70,50	3,00 53,56 70,50	l/s l/s
Regenabfluß Mischwasserabfluß Abflußfracht	NH4-N AFS pH-Wert Alkalinität QR QM BSB5	360,20 7,28 2,72 0,00 16,94 4.880	241,34 2 7,37 2,94 52,34 69,27 6.966	7,38 2,96 53,56 70,50 4.997	7 2 53 70 3.5	,98 ,56 ,50 517	2,99 53,56 70,50 2.621	2,99 53,56 70,50 2.114	3,00 53,56 70,50 1.843	3,00 53,56 70,50 1.701	3,00 53,56 70,50 1.629	3,00 53,56 70,50 1.593	l/s l/s mg/s
Regenabfluß Mischwasserabfluß Abflußfracht	NH4-N AFS pH-Wert Alkalinität QR QM	360,20 7,28 2,72 0,00 16,94 4.880 866	241,34 2 7,37 2,94 52,34 69,27 6.966 1.085	7,38 2,96 53,56 70,50	7 2 53 70 3.5	,98 ,56 ,50 517	2,99 53,56 70,50 2.621 533	2,99 53,56 70,50 2.114 465	3,00 53,56 70,50 1.843 428	3,00 53,56 70,50 1.701 409	3,00 53,56 70,50	3,00 53,56 70,50 1.593 394	l/s l/s mg/s mg/s
Regenabfluß Mischwasserabfluß Abflußfracht	NH4-N AFS pH-Wert Alkalinität QR QM BSB5 NH4-N AFS	360,20 7,28 2,72 0,00 16,94 4.880	241,34 2 7,37 2,94 52,34 69,27 6.966 1.085	7,38 2,96 53,56 70,50 4.997 841	7 2 53 70 3.5 6 14.0 49	,98 ,56 ,50 517 650 022 ,88	2,99 53,56 70,50 2.621 533 13.293 37,17	2,99 53,56 70,50 2.114 465 12.887 29,99	3,00 53,56 70,50 1.843	3,00 53,56 70,50 1.701 409 12.561 24,13	3,00 53,56 70,50 1.629 399 12.505	3,00 53,56 70,50 1.593 394 12.476 22,59	l/s l/s mg/s mg/s mg/s mg/l
Regenabfluß Mischwasserabfluß Abflußfracht Abflußkonzentration	NH4-N AFS pH-Wert Alkalinität QR QM BSB5 NH4-N AFS BSB5 NH4-N	360,20 7,28 2,72 0,00 16,94 4.880 866 6.100 288,16 51,15	241,34 2 7,37 2,94 52,34 69,27 6.966 1.085 16.718 1	7,38 2,96 53,56 70,50 4.997 841 5.254 70,88 11,92	7 2 53 70 3.5 6 14.0 49	,98 ,56 ,50 517 550 022 ,88 ,23	2,99 53,56 70,50 2.621 533 13.293 37,17 7,55	2,99 53,56 70,50 2.114 465 12.887 29,99 6,59	3,00 53,56 70,50 1.843 428 12.672 26,14 6,07	3,00 53,56 70,50 1.701 409 12.561 24,13 5,80	3,00 53,56 70,50 1.629 399 12.505 23,11 5,66	3,00 53,56 70,50 1.593 394 12.476 22,59 5,59	l/s l/s mg/s mg/s mg/s mg/l mg/l
Regenabfluß Mischwasserabfluß Abflußfracht Abflußkonzentratior	NH4-N AFS pH-Wert Alkalinität QR QM BSB5 NH4-N AFS BSB5 NH4-N AFS	360,20 7,28 2,72 0,00 16,94 4.880 866 6.100 288,16 51,15 360,20	241,34 2 7,37 2,94 52,34 69,27 6.966 1.085 16.718 1 100,56 15,66 241,34 2	7,38 2,96 53,56 70,50 4.997 841 5.254 70,88 11,92	7 2 53 70 3.5 6 14.0 49 9	,56 ,50 517 550 022 ,88 ,23	2,99 53,56 70,50 2.621 533 13.293 37,17 7,55 188,55	2,99 53,56 70,50 2.114 465 12.887 29,99 6,59 182,80	3,00 53,56 70,50 1.843 428 12.672 26,14 6,07 179,75	3,00 53,56 70,50 1.701 409 12.561 24,13 5,80 178,17	3,00 53,56 70,50 1.629 399 12.505 23,11 5,66 177,37	3,00 53,56 70,50 1.593 394 12.476 22,59 5,59 176,97	l/s l/s mg/s mg/s mg/s mg/l mg/l
Regenabfluß Mischwasserabfluß Abflußfracht Abflußkonzentration	NH4-N AFS pH-Wert Alkalinität QR QM BSB5 NH4-N AFS BSB5 NH4-N	360,20 7,28 2,72 0,00 16,94 4.880 866 6.100 288,16 51,15	241,34 2 7,37 2,94 52,34 69,27 6.966 1.085 16.718 1	7,38 2,96 53,56 70,50 4.997 841 5.254 70,88 11,92	77 22 53 70 3.5 6 14.6 49 9 198	,98 ,56 ,50 517 550 022 ,88 ,23	2,99 53,56 70,50 2.621 533 13.293 37,17 7,55	2,99 53,56 70,50 2.114 465 12.887 29,99 6,59 182,80 7,40	3,00 53,56 70,50 1.843 428 12.672 26,14 6,07	3,00 53,56 70,50 1.701 409 12.561 24,13 5,80	3,00 53,56 70,50 1.629 399 12.505 23,11 5,66	3,00 53,56 70,50 1.593 394 12.476 22,59 5,59	l/s l/s mg/s mg/s mg/s mg/l mg/l mg/l

	-	
h_2_11	ina.aes.	mhH

Rothenburg o.d.T Prognosezustand Projekt-Nummer: Auftraggeber: 2 Stadt Rothenburg o.d.T.

Regenüberlaufbecken

RUB.Kaiserweg	JOOK	, , , ,										
Trockenwetterabflus	88	Tagesmit	tel	Zulauf		Ablauf	Abschlag					
Einwohnerzahl	33	EZ		1.624		1.624	0	Е				
häuslicher Schmutzwasserabflu	ss	Qh24		2,54		2,54	0.00	l/s				
gewerblicher Schmutzwasserab		Qg24		0,00		0,00	0.00	l/s				
Schmutzwasserabfluss	iiuoo	Qs24		2,54		2,54	0.00	l/s				
Fremdwasserabfluss		Qf24		0,78		0.78	0,00	l/s				
Trockenwetterabfluss		Qt24		3,32		3,32	0,00	l/s				
		Tagesspi	tze	-,-		-,-	-,					
häuslicher Schmutzwasserabflu	22	Qhx		4,68		4,68	0.00	l/s				
gewerblicher Schmutzwasserab		Qgx		0,00		0,00	0.00	l/s				
Schmutzwasserabfluss		Qsx		4,68		4,68	0,00	l/s				
Trockenwetterabfluss		Qtx		5,46		5,46	0,00	l/s				
Regenwetterabfluss	;			Zulauf		Ablauf	Abschlag					
unabgeminderter Regenabfluss		Qr15	2.1	174,91		0.00	0.00	l/s				
abgeminderter Regenabfluss		Qr		174,91		0,00	0,00	l/s				
unabminderbarar Regenabfluss		uQr		0,00		13,98	2.160,93	l/s				
längste Fliesszeit		LTf		10,00		10,00	0,00	min				
maßgebliche Fliesszeit		Tf		10,00		0,00	0,00	min				
Zeitbeiwert		PHI		1,00		1,00	1,00	-				
Regenabfluss aus Trennsystem	<u> </u>	QrT24		0,00		0,00	0,00	l/s				
Einzugsgebiet				Zulauf		Ablauf	Abschlag		<u> </u>			
Einzugsgebietsfläche		AE		38,91		0,00	0,00	ha				
		Sum AE		38,91		38,91	0,00	ha				
undurchlässige Fläche		Au		17,51		0,00	0,00	ha				
		Sum Au		17,51		17,51	0,00					
mittlere Geländeneigungsgruppe	e	NGm		2,00		2,00	0,00	-				
Nachweis A128												
Drosselabfluß		QD		17,30			Auslastungs		anlage	n	3,53 -	-
Regenabfluss 24-h-Mittel		Qr24		13,98	,	•	Einflusswer					
Regenabflußspende		qr		0,80	l/(s*ha		Jahresniede	_		ah	-0,09 -	
Trockenwetter-Abflußspende		qt		0,19	l/(s*ha	а)	TW-Konzent			ac	1,00 -	
mittl. Regenabfluss bei Entlastu	ng	Qre		92,85	l/s		Kanalablage			aa	0,38 -	
mittleres Mischverhältnis		m m orf		27,98	-		xa-Wert Kan			xa	14,57 -	
erforderliches Mischverhältnis		m_erf		7,00 61,80	- %		Fließzeit-Abr		•	af	0,95 -	-
zulässige Entlastungsrate spezifisches Speichervolumen		e0 VS		7,30	m^3/h	20	CSB-Konze		eri	ot	535,36 r	ma/l
erforderl. Speichervolumen		V	-	127,73	m^3	ıa	Trockenwette Regenwasse			ct cr		mg/l mg/l
Summe erforderl. Speichervolur	men	Sum V		127,73	m^3		Bemessung	5 1		cb		mg/l
vorhandenes Speichervolumen	11011	VOL		257,00	m^3		Entlastung			ce		mg/l
max. Klärüberlauf		maxQKÜ		500,00	l/s		Littlastarig			CC	123,07	1119/1
kritischer Regenabfluss		Qrkrit		262,64								
kritischer Mischwasserabfluss		Qkrit		265,96								
Lage				,								
Rechtswert		RW		0.00	_		Hochwert	HW		0.00	_	
Gelände		Gel		,	mNN		Strasse			-,		
Frachten und Konze	entrat	ionen										
Regenabflußspendegrab	0	0,5	1		2	4	8	16	32	64	128	l/(s*ha
Mischwasserzufluß QM	3,32	12,07	20,83	38	,34	73,36		283,47	563,62	1.123,93	2.244,53	I/s
Zuflußfracht BSB5	1.015	1.562	1.755	2.1	142	2.914	4.460	7.551	13.734	26.099	50.830	
NH4-N	180	228	277	3	373	567	953	1.726	3.271	6.363	12.545	mg/s
AFS	1.269	3.257	4.802	7.8	394	14.076	26.442	51.172	100.634	199.556	397.402	mg/s
	305,92	129,38	84,27	55	,86	39,73	31,10	26,64	24,37	23,22	22,65	mg/l
NH4-N	54,30	18,92	13,29	9	,74	7,72	6,65	6,09	5,80	5,66	5,59	mg/l
	382,40		230,58	205	,90	191,89	184,40	180,52	178,55	177,55	177,05	mg/l
pH-Wert	7,30	7,37	7,38		,39	7,40	7,40	7,40	7,40	7,40	7,40	
Alkalinität	2,76	2,94	2,96		,98	2,99		3,00	3,00	3,00	3,00	
Regenabfluß QR	0,00	8,75	13,98		,98	13,98	13,98	13,98	13,98	13,98	13,98	I/s
Mischwasserabfluß QM	3,32	12,07	17,30		,30	17,30		17,30	17,30	17,30	17,30	
Abflußfracht BSB5	1.015	1.562	1.458		966	687		461	422	402	392	
NH4-N AFS	180 1.269	228 3.257	230 3.989		168 562	134 3.320		3.123	100 3.089	98 3.072	97 3.063	mg/s mg/s
	305,92	129,38	84,27		,86	39,73	31,10	26,64	24,37	23,22	22,65	
		18,92	13,29		,74	7,72		6,09	5,80	5,66	5,59	
NH4-N	54.30	10.92								-,		
NH4-N	54,30 382,40		230,58	205		191,89		180,52	178,55	177,55	177,05	mg/l
NH4-N	382,40 7,30			205		191,89 7,40	184,40 7,40			7,40	7,40	-
NH4-N AFS	382,40	269,75 2	230,58	205 7	,90	191,89	184,40 7,40	180,52	178,55			-

b-a-u ing.ges.mbH			
Rothenburg o.d.T	Projekt-Nummer:	2	
Prognosezustand	Auftraggeber:	Stadt Rothenburg o.d.T.	
Regenüberlauf			
DU O O /- I DÜO\			

Prognezustand	Rothenburg o.d.T						ojekt-Nun			4 D-4hh	d T			
RU.6.3 (ehm. RÜ8) Trockenwetterabfluss Ez	Prognosezustand		•			Au	πraggebe	er:	Stad	t Rothenb	urg o.d. I .			
Trockenwetterabflus	La Constitution of the Con													
Trockenwetterabflus	RU.6.3 (ehi	m. RÜ8	3)											
Elmvolnerzahl			•	Tagesm	ittel 2	Zulauf	Ab	olauf	Abschlag					
hauslicher Schmutzwasserabluss og 24 0,00 0,00 0,00 l/s Schmutzwasserabluss 0,224 0,54 0,54 0,00 l/s Schmutzwasserabluss 0,224 0,54 0,54 0,00 l/s Schmutzwasserabluss 0,224 0,36 0,36 0,00 l/s Schmutzwasserabluss 0,224 0,36 0,36 0,00 l/s Schmutzwasserabluss 0,224 0,90 0,90 0,90 0,90 l/s Schmutzwasserabluss 0,224 0,90 0,90 0,90 l/s Schmutzwasserablus 0,224 0,90 0,90 0,90 0,90 0,90 0,90 0,90 0,9				_		343		343	0	Е				
Schmutzwasserabfluss	häuslicher Schmut	zwasserabf	luss			0,54	(0,54						
Fremdwasserabfluss	•		abfluss											
Trockenwetterabfluss														
Mauslicher Schmutzwasserabfluss Open														
häuslicher Schmutzwasserabfluss	rockenwetteraptil	JSS			:4	0,90		0,90	0,00	I/S				
Semetricitical excitation Communication	l. v l' . l O . l		J		pitze	0.00		0.00	0.00	17-				
Schmutzwasserabfluss								-	,					
Trockenwetterabfluss	3		abiluss					-	,					
Regenwetterabfluss														
Machine Mach				QU						1/0				
Bageminderter Regenabfluss Ur 0.00 377,60 255,14 V V V V V V V V V				0:15	2	70 74		0.00	ŭ	I/o				
unabminderbarar Regenabiliuss uQr 0,00 137,60 235,14 l/s langster libesszeit LTf 5,00 0,00 0,00 min langster libesszeit Tf 5,00 0,00 0,00 min Zeitbeiwert PHI 1,00 1,50 0,00 l/s secondary	•	-	5			,		,						
Bangste Fliesszeit		_	ss		3									
maßgebliche Fliesszeit		.ogonabilus						-						
Zeitbeiwert PHI	•	szeit				,		-						
Regenabflus aus Trennsystem														
Einzugsgebietsfläche	Regenabfluss aus	Trennsyste	m	QrT24		1,50				l/s				
Einzugsgebiefsfläche	Einzuasaeb	iet			Z	Zulauf	Ab	olauf	Abschlag					
March Sum AE 4,79 4,79 0,00 ha Name				AE		4,79	(0,00	0,00	ha				
Name	0 0			Sum AE		4,79		4,79	0,00	ha				
Machweis A128 Name	undurchlässige Flä	iche												
Nachweis A128														
Drosselabfluß			pe	NGm		2,00		2,00	0,00	-				
Kritische Regenspende Fixrit	Nachweis A	128												
Kritischer Regenabfliuss					1	40,00	l/s							
Kritischer Mischwasserabflus Mischwerhältnis m 155,16 - Trockenwetter-Konzentration ct CSB 418,45 mg/l Lage Rechtswert RW 0,00 - Hochwert HW 0,00 - Gelände Gel 0,00 mNN Strasse Frachten und Konzentrationenenenenenenenenenenenenenenenenenene							. ,							
Mischverhältnis														
Mindest-Mischverhältnis		sserabfluss												
Trockenwetter-Konzentration ct CSB 418,45 mg/l Lage Rechtswert RW 0,00 - 0,00 mNN Hochwert Strasse HW 0,00 - Frachten und Konzentrationen Regenabflußspendegrab 0 0,5 1 2 4 8 16 32 64 128 I/(s*ha Mischwasserzufluß QM 0,90 4,08 5,75 9,11 15,81 29,22 56,05 109,70 216,99 431,58 I/s Zuflußfracht BSB5 214 296 333 407 555 850 1.442 2626 4.994 9,730 mg/s ZuflußkonzentrationBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/s ZuflußkonzentrationBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/l AFS 298,90 206,81 198,00 190,10<		ältnin			1									
Rechtswert RW 0,00 - Hochwert Strasse Strasse Strasse Rechtswert Gelande Gel 0,00 mNN Strasse Strasse Strasse Regenabflußspendkgrab O 0,5 1 2 4 8 16 32 64 128 I/(s*hatscharts					1									
Rechtswert Gelande RW Gel O,00 - Non Hochwert Strasse HW O,00 - Strasse Frachten und Konzentrationen		<u>IZETILI ALIOTT</u>		CL COD	- 4	10,43	my/i							
Frachten und Konzentrationen Regenabflußspendkgrab 0 0,5 1 2 2 4 8 16 32 64 128 /(s*hat Mischwasserzuffuß QM 0,90 4,08 5,75 9,11 15,81 29,22 56,05 109,70 216,99 431,58 /s Zuffußfracht BSB5 214 296 333 407 555 850 1,442 2,626 4,994 9,730 mg/s NIH4-N 38 56 65 83 120 194 342 638 1,230 2,414 mg/s AFS 268 843 1,139 1,731 2,915 5,283 10,019 19,490 38,434 76,320 mg/s 32 32 33 34 34 35,07 29,10 25,74 23,94 23,02 22,55 mg/l 34 34 34 34 34 34 34 3				DW		0.00			Lloobyyort	LIVAZ		0.00		
Regenabflußspendeqrab 0 0,5 1 2 4 8 16 32 64 128 I/(s*hat Mischwasserzufluß QM 0,90 4,08 5,75 9,11 15,81 29,22 56,05 109,70 216,99 431,58 I/s 1/s 1/										HVV		0,00	-	
Regenabflußspendkqrab 0 0,5 1 2 4 8 16 32 64 128 I/(s*hat Mischwasserzufluß QM 0,90 4,08 5,75 9,11 15,81 29,22 56,05 109,70 216,99 431,58 I/s Zuflußfracht BSB5 214 296 333 407 555 850 1.442 2.626 4.994 9,730 mg/s NH4-N 38 56 65 83 120 194 342 638 1.230 2.414 mg/s AFS 268 843 1.139 1.731 2.915 5.283 10.019 19.490 38.434 76.320 mg/s NH4-N 42,44 13,64 11,27 9,15 7,61 6,65 6,11 5,82 5,67 5,59 mg/l NH4-N 42,44 13,64 11,27 9,15 7,38 7,39 7,39 7,40 7		nd Kas-	ontrot			0,00	HININ		บแสจจช					
Mischwasserzufluß QM					4		2	,	0	16	20	G A	400	1//0*6~
BSB5					5 75	a								
NH4-N 38 56 65 83 120 194 342 638 1.230 2.414 mg/s AFS 268 843 1.139 1.731 2.915 5.283 10.019 19.490 38.434 76.320 mg/s ZuflußkonzentrationBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/l NH4-N 42,44 13,64 11,27 9,15 7,61 6,65 6,11 5,82 5,67 5,59 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l DH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,40 7,40 7,40 7,40 7,40 Alkalinität 2,60 2,91 2,94 2,96 2,98 2,99 2,99 3,00 3,00 3,00 mmol/l Regenabfluß QR 0,00 3,18 4,86 8,21 14,92 28,33 55,15 108,80 139,10 139,10 l/s Mischwasserabfluß QM 0,90 4,08 5,75 9,11 15,81 29,22 56,05 109,70 140,00 140,00 l/s Abflußfracht BSB5 214 296 333 407 555 850 1.442 2.626 3.222 3.156 mg/s NH4-N 38 56 65 83 120 194 342 638 794 783 mg/s AFS 268 843 1.139 1.731 2.915 5.283 10.019 19.490 24.797 24.757 mg/s AbflußkonzentratiorBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l							,							
AFS 268 843 1.139 1.731 2.915 5.283 10.019 19.490 38.434 76.320 mg/s													2.414	mg/s
NH4-N 42,44 13,64 11,27 9,15 7,61 6,65 6,11 5,82 5,67 5,59 mg/l		AFS	268	843	1.139		731 2	2.915	5.283	10.019	19.490	38.434	76.320	mg/s
AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l pH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,40 7,40 7,40 7,40 -	Zuflußkonzentratio				57,79								22,55	mg/l
PH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,40														
Regenabfluß QR QR Q,00 3,18 4,86 8,21 14,92 28,33 55,15 108,80 139,10 139,10 I/s														
Regenabfluß QR			2.60					2 09	7,39					
Mischwasserabfluß QM 0,90 4,08 5,75 9,11 15,81 29,22 56,05 109,70 140,00 140,00 I/s Abflußfracht BSB5 214 296 333 407 555 850 1.442 2.626 3.222 3.156 mg/s NH4-N 38 56 65 83 120 194 342 638 794 783 mg/s AFS 268 843 1.139 1.731 2.915 5.283 10.019 19.490 24.797 24.757 mg/s AbflußkonzentratiorBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/l NH4-N 42,44 13,64 11,27 9,15 7,61 6,65 6,11 5,82 5,67 5,59 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84	Regenabiling													
Abflußfracht BSB5 NH4-N 214 296 333 407 555 850 1.442 850 2.626 3.222 3.156 mg/s NH4-N 38 56 65 83 120 194 342 638 794 783 mg/s 783 mg/s AFS 268 843 1.139 1.731 2.915 5.283 10.019 19.490 24.797 24.757 mg/s 24.757 mg/s AbflußkonzentratiorBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/l 23,02 22,55 mg/l NH4-N 42,44 13,64 11,27 9,15 7,61 6,65 6,11 5,82 5,67 5,59 mg/l 5,59 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l 176,84 mg/l pH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,39 7,40 7,40 7,40 7,40 7,40 -														
NH4-N 38 56 65 83 120 194 342 638 794 783 mg/s AFS 268 843 1.139 1.731 2.915 5.283 10.019 19.490 24.797 24.757 mg/s AbflußkonzentratiorBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/l NH4-N 42,44 13,64 11,27 9,15 7,61 6,65 6,11 5,82 5,67 5,59 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l pH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,40 7,40 7,40 7,40 -														
AFS 268 843 1.139 1.731 2.915 5.283 10.019 19.490 24.797 24.757 mg/s AbflußkonzentratiorBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/l NH4-N 42,44 13,64 11,27 9,15 7,61 6,65 6,11 5,82 5,67 5,59 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l pH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,40 7,40 7,40 7,40 -		NH4-N												
AbflußkonzentratiorBSB5 239,12 72,49 57,79 44,64 35,07 29,10 25,74 23,94 23,02 22,55 mg/l NH4-N 42,44 13,64 11,27 9,15 7,61 6,65 6,11 5,82 5,67 5,59 mg/l AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l pH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,40 7,40 7,40 -7,40 -		AFS				1.7					19.490	24.797	24.757	mg/s
AFS 298,90 206,81 198,00 190,10 184,35 180,77 178,75 177,68 177,12 176,84 mg/l pH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,40 7,40 7,40 7,40 -	Abflußkonzentratio	rBSB5	239,12	72,49	57,79	44	,64 3	35,07	29,10	25,74	23,94	23,02	22,55	mg/l
pH-Wert 7,23 7,36 7,37 7,38 7,39 7,39 7,40 7,40 7,40 7,40 -														
Aikaiinitat 2,00 2,91 2,94 2,90 2,98 2,99 2,99 3,00 3,00 3,00 mmol/l														
	-	Aikalinitat	2,60	2,91	2,94	2	,୫୦	2,98	2,99	2,99	3,00	3,00	3,00	mmoi/l

Rothenburg o.d.T	Projekt-Nummer:	2
Prognosezustand	Auftraggeber:	Stadt Rothenburg o.d.T.

Regenüberlaufbecken RUB.Leuzenbronn

Trockenwetterabfluss E2	RUB.Leuz	enbroni	n												
Elmochenerzahl	Trockenwe	tterabflu	ISS	Tagesm	ittel	Zulauf		Ablauf	Abschlag						
häuslicher Schmutzwasserabfluss (24 0,00 0,00 0,00 1/s				_		221		221	0	F					
gewerblicher Schmutzwasserabflius		ıtzwasserabf	luss												
Schmutzwasserabfluss									0,00	l/s					
Frendrasserabfluss	Schmutzwasseral	bfluss				0,35		0,35	0,00	l/s					
Mauslicher Schmutzwasserabfluss Chx Chy	Fremdwasserabflu	uss		Qf24		0,22			0,00	l/s					
häuslicher Schmutzwasserabluss of were gewerblicher Schwitzwasserabluss of were gewerblicher Schwitzwasserabluss of were gewerblicher Schwitzwasserabluss of were gewerblicher Schwitzwasserablus of were gewerblicher were gewerbliche	Trockenwetterabfl	luss		Qt24		0,56		0,56	0,00	l/s					
häuslicher Schmutzwasserabluss of were gewerblicher Schwitzwasserabluss of were gewerblicher Schwitzwasserabluss of were gewerblicher Schwitzwasserabluss of were gewerblicher Schwitzwasserablus of were gewerblicher were gewerbliche				Tagessi	oitze										
gewerblicher Schmutzwasserabfliuss Qax 0,00 0,00 0,00 Vs	häuslicher Schmu	ıtzwasserabf	luss			1,04		1,04	0.00	l/s					
Schmutzwasserabfluss	gewerblicher Schi	mutzwassera	abfluss						0,00	l/s					
Ablauf Abberliag	Schmutzwasseral	bfluss				1,04		1,04	0,00	l/s					
Magnetide Magn	Trockenwetterabf			Qtx		1,25		1,25	0,00	l/s					
unabgeminderter Regenabfluss Qr	Regenwette	erabflus	S			Zulauf		Ablauf	Abschlag						
abgeminderter Regenabfluss u Cr 0,00 0,00 0,00 0,00 0,00 min malgebliche Fliesszeit 17f 5,00 0,00 0,00 0,00 0,00 0,00 Us				Or15	_	141 12		0.00	0.00	I/s					
unabminderbarar Regenabifluss uOr 0,00 3,44 437,68 l's lagste Fliesszeit LTf 5,00 0,00 0,00 mind Zeitbeiwert PHI 1,00 0,00 0,00 0,00 l's Regenabifluss aus Trennsystem QTZ4 0,00 0,00 0,00 l's Einzugsgebiefs Zulauf Ablauf Abschlag Einzugsgebiefs auch eingengegebiefs AE 10,32 0,00 0,00 ha Linzugsgebiefs auch eingengegrupe NGm 2,00 0,00 0,00 ha Linzugsgebiefs auch eingengegrupe NGm 2,00 0,00 0,00 ha Machael eingengegrupe NGm 2,00 0,00 0,00 ha Nachweis A128 Drosenlafülüs Qr24 3,44 l'(s*ha) Auslastungswert Kläranlage n 3,65 - Begenachluss Anheitel Qr24 3,44 l'(s*ha) Fileflusswerte Jahresmiederschlag ah 0,00 -									,						
langste Filesszeit			ss												
maßgebliche Fliesszeit PHI 0,00 0,00 0,00 0,00 min 1 0 0 0,00 0 0 0,00 0 0 0,00 0 0 0,00 0 0 0,00 0 0 0,00 0 0 0,00 0 0 0,00 0 0 0,00 0 0 0,00 0 0 0 0,00 0 0 0 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
PHI															
Regenabflusa sua Frenneystem															
Einzugsgebietsfläche		s Trennsyste	m							l/s					
Einzugsgebiefsfläche						Zulauf		Ablauf	Abschlag						
Sum AL 10,32 10,32 0,00 ha				ΔF		10 32		0.00	0.00	ha					
Mark	LITIZUYSYEDIEISIIA	IOI IC							,						
Nachweis A128 Nachweis A1	undurchlässige El	äche							,						
mittlere Geländeneigungsgruppe NGm 2,00 2,00 0,00 - Nachweis A128 Drosseläbfluß QD 4,00 I/s Auslastungswert Kläranlage Einflusswerte n 3,65 - Regenabfluss 24-h-Mittel Qr24 3,44 I/(s*ha) Bussensiederschlag ah -0,09 - Trockenwetter-Abflußspende qt 1,111 I/(s*ha) TW-Konzentration ac 1,00 - mittl. Regenabfluss bei Entlastung ore orforderliches Mischverhältnis m 35,24 - xa-Wert Kanalablagerungen aa 1,07 - erforderliches Mischverhältnis m erf 7,00 - Fileßzeit-Abmiderung af 0,98 - zulässige Entlastungsrate specifichervolumen vS 6,01 m*3 Regenwasser or 107,70 mg/l Summe erforderl. Speichervolumen V 18,61 m*3 Bemessung ob 961,45 mg/l Summe erforderl. Speichervolumen VOL 101,00 m*3 Bemessung ob 9,61	andaromassiye Fi	au iu													
Drosselabfluß	mittlere Geländen	eigungsarun	pe												
Drosselabfluß			ро	110111		2,00		2,00	0,00						
Regenabflus 24-h-Mittel		4720													
Regenabflußspende qr								,			nlage	n	3,65 -	-	
Trockenwetter-Abflußspende qt 0,18 l/(s*ha) TW-Konzentration ac 1,00 - mittll. Regenabfluss bei Entlastung qr 19,81 l/s Kanalablagerungen aa 0,70 - mittleres Mischverhältnis m of 7,00 - Fließzeit-Abminderung af 0,98 - Regenabflußsberichten of 0,10 m/3/ha Trockenwetter of 0,70 m/3 Regenwasser of							,	,							
mittleres Mischverhältnis m off of the string of the erforderliches Mischverhältnis m off of the string of the erforderliches Mischverhältnis m off of the erforderliches Mischverhältnis m off of the erforderliches Mischverhältnis m of the erforderliches Mischverhaltnis m of the erford				-			•	•					,		
mittleres Mischverhältnis merf 7,00 - Fließzeit-Abminderungen af 10,77 - Viewerforderliches Mischverhältnis merf 7,00 - Fließzeit-Abminderung af 0,98 - Viewerforderliches Mischverhältnis merf 7,00 - Fließzeit-Abminderung af 0,98 - Viewerforderliches Mischverhältnis merf 7,00 - Single Fließzeit-Abminderung af 0,98 - Viewerforderliches Mischverhältnis merforderliches Speichervolumen VS 6,01 m²/ah Trockenwetter ct 430,08 mg/l speichervolumen VV 18,61 m²/a Regenssung cb 961,45 mg/l vorhandenes Speichervolumen VOL 101,00 m²/a Bemessung cb 961,45 mg/l vorhandenes Speichervolumen VOL 101,00 m²/a Bemessung cb 961,45 mg/l vorhandenes Speichervolumen Mischwasserabflus Crkrit 46,44 l/s kritischer Regenabflus Crkrit 46,44 l/s kritischer Regenabflus Crkrit 47,00 - Viewerforderliches Mischwasserabflus Cell 10,00 mN Strasse Viewerforderliches Cell 0,00 m/l N N Strasse Viewerforderliches Cell 0,00 m/l N N N N N N N N N N N N N N N N N N N			4				, ,								
erforderliches Mischverhältnis en erf erforderliches Mischverhältnis ungstate erforderliches Speichervolumen visualissige Entlastungsrate erforderl. Speichervolumen vorhandenes Speichervolumen vorhanderes Speichervolumen vorha			lung								ınaan		0,70 -	-	
zulassige Entlastungsrate spezifischers Speichervolumen e0 61,08 % (0.1 m²/3/m) (1.0 m²/3/m) CSB-Konzentrationen v 430,08 mg/l m²/3 mg/gl mg/l m²/3 mg/gl reforderl. Speichervolumen VS 6,01 m²/3 m²/3 mg/gl Regenwasser cr (107,00 mg/l mg/l mg/gl ct 430,08 mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l				_											
Spezifisches Speichervolumen												aı	0,96 -	•	
erforderl. Speichervolumen			1	VS V Sum V	e0				/ha			''	ct	430 08 A	ma/l
Sum V 18,61 m/3 Bernessung Cb 961,45 mg/l vorhandenes Speichervolumen maxQRV 500,00 l/s vorhandenes Speichervolumen vorhandenes Sp	•		'					IIa							
Volume			umen						-	71					
max Klärüberlauf kritischer Regenabfluss kritischer Regenabfluss kritischer Regenabfluss (Qkrit 46,44 l/s kritischer Mischwasserabfluss) Qkrit 47,00 - Hochwert 47,00 - HW 0,00 - - Lage Rechtswert Gelände RW 0,00 - NN N Strasse HW 0,00 - -					1										
Kritischer Regenabfluss Okrit Ckrit Ck	•								Entiastang			00	100,00	1119/1	
Rechtswert															
Rechtswert RW 0,00 - Hochwert HW 0,00 Strasse Rechtswert Gelande Gel 0,00 mNN Strasse Strasse Strasse Rechtswert HW 0,00 Strasse Regenabflußspendkqrab 0 0,5 1 2 4 8 16 32 64 128 I/(s*hay) Mischwasserzufluß QM 0,56 2,11 3,66 6,75 12,95 25,33 50,10 99,63 198,71 396,85 I/s Zuflußfracht BSB5 138 268 303 371 508 781 1.327 2.421 4.607 8.980 mg/s NH4-N 25 33 42 59 93 161 298 571 1.118 2.211 mg/s AFS 173 566 839 1.386 2.479 4.666 9.039 17.784 35.276 70.258 mg/s NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/s NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/s NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/s NH4-N 43,62 15,67 11,37 3,49 7,39 7,40 7,40 7,40 7,40 7,40 7,40 NH4	U														
Rechtswert RW Gel O,00 - Hochwert HW O,00 Color Frachten und Konzentrationen Regenabflußspendkgrab O O,5 1 2 2 4 8 16 32 64 128 I/(s*hat Nasserzufluß QM O,56 2,11 3,66 6,75 12,95 25,33 50,10 99,63 198,71 396,85 I/s Zuflußfracht BSB5 138 268 303 371 508 781 1.327 2.421 4.607 8.980 mg/s NH4-N 25 33 42 59 93 161 298 571 1.118 2.211 mg/s ZuflußkonzentrationBSB5 245,76 127,22 82,72 54,92 39,21 30,83 26,50 24,30 23,19 22,63 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 3,57 mg/l NH4-N 7,24 7,36 7,37 7,39 7,39 7,40	_					,									
Regenabflußspendegrab				DW		0.00			Lloobyyort	LIVAZ		0.00			
Regenabflußspendegrab 0 0,5 1 2 4 8 16 32 64 128 1/(s*ha)						,				ПVV		0,00	-		
Regenabflußspendeqrab 0 0,5 1 2 4 8 16 32 64 128 I/(s*hat)		1 17	1 1			0,00	IIIININ	1	Suasse						
Mischwasserzufluß QM															
SBB5 138 268 303 371 508 781 1.327 2.421 4.607 8.980 mg/s NH4-N 25 33 42 59 93 161 298 571 1.118 2.211 mg/s AFS 173 566 839 1.386 2.479 4.666 9.039 17.784 35.276 70.258 mg/s ZuflußkonzentratiorBSB5 245,76 127,22 82,72 54,92 39,21 30,83 26,50 24,30 23,19 22,63 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l AFS 307,20 268,32 229,48 205,22 191,51 184,20 180,42 178,50 177,53 177,04 mg/l Regenabfluß QR 0,00 1,55 3,10 3,44					-										
NH4-N 25 33 42 59 93 161 298 571 1.118 2.211 mg/s															
AFS 173 566 839 1.386 2.479 4.666 9.039 17.784 35.276 70.258 mg/s	∠utluistracht					- 3									
ZuflußkonzentrationBSB5 245,76 127,22 82,72 54,92 39,21 30,83 26,50 24,30 23,19 22,63 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l AFS 307,20 268,32 229,48 205,22 191,51 184,20 180,42 178,50 177,53 177,04 mg/l PH-Wert 7,24 7,36 7,37 7,39 7,39 7,40			25												
NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l	7														
AFS 307,20 268,32 229,48 205,22 191,51 184,20 180,42 178,50 177,53 177,04 mg/l pH-Wert 7,24 7,36 7,37 7,39 7,39 7,40	∠utluiskonzentrati												22,63	mg/l	
PH-Wert 7,24 7,36 7,37 7,39 7,39 7,40								101.51							
Regenabfluß QR QR Q,00 1,55 3,10 3,44 4,44								191,51							
Regenabfluß QR 0,00 1,55 3,10 3,44 4,00															
Mischwasserabfluß QM	Regenatifue														
Abflußfracht BSB5 NH4-N 138 268 303 220 157 123 106 97 93 91 mg/s NH4-N 25 33 42 35 29 25 24 23 23 22 mg/s AFS 173 566 839 821 766 737 722 714 710 708 mg/s AbflußkonzentratiorBSB5 245,76 127,22 82,72 54,92 39,21 30,83 26,50 24,30 23,19 22,63 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l AFS 307,20 268,32 229,48 205,22 191,51 184,20 180,42 178,50 177,53 177,04 mg/l pH-Wert 7,24 7,36 7,37 7,39 7,39 7,40 7,40 7,40 7,40 7,40															
NH4-N 25 33 42 35 29 25 24 23 23 22 mg/s															
AbflußkonzentratiorBSB5 245,76 127,22 82,72 54,92 39,21 30,83 26,50 24,30 23,19 22,63 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l AFS 307,20 268,32 229,48 205,22 191,51 184,20 180,42 178,50 177,53 177,04 mg/l pH-Wert 7,24 7,36 7,37 7,39 7,39 7,40 7,40 7,40 7,40 7,40 -	ADIIUBIIAUIL														
AbflußkonzentratiorBSB5 245,76 127,22 82,72 54,92 39,21 30,83 26,50 24,30 23,19 22,63 mg/l NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l AFS 307,20 268,32 229,48 205,22 191,51 184,20 180,42 178,50 177,53 177,04 mg/l pH-Wert 7,24 7,36 7,37 7,39 7,39 7,40 7,40 7,40 7,40 -			173			\$									
NH4-N 43,62 15,67 11,37 8,69 7,17 6,36 5,94 5,73 5,63 5,57 mg/l AFS 307,20 268,32 229,48 205,22 191,51 184,20 180,42 178,50 177,53 177,04 mg/l pH-Wert 7,24 7,36 7,37 7,39 7,39 7,40 7,40 7,40 7,40 7,40 -	Abflußkonzentrati														
AFS 307,20 268,32 229,48 205,22 191,51 184,20 180,42 178,50 177,53 177,04 mg/l pH-Wert 7,24 7,36 7,37 7,39 7,39 7,40 7,40 7,40 7,40 7,40 -															
pH-Wert 7,24 7,36 7,37 7,39 7,39 7,40 7,40 7,40 7,40 -															
Alkalinität 2,61 2,90 2,94 2,97 2,98 2,99 3,00 3,00 3,00 3,00 mmol/l					7,37			7,39							
		Alkalinität	2,61	2,90	2,94			2,98		3,00	3,00	3,00	3,00		

Rothenburg o.d.T	Projekt-Nummer:	2
Prognosezustand	Auftraggeber:	Stadt Rothenburg o.d.T.

RUB	.Bette	nfeld

RUB.Better	nfeld												
Trockenwet	terabflu	ISS	Tagesm	ittel	Zulauf		Ablauf	Abschlag					
Einwohnerzahl			EZ		202		202	0	Е				
häuslicher Schmutz	zwasserabfl	luss	Qh24		0,32		0,32	0.00					
gewerblicher Schm			Qg24		0,00		0,00	0,00					
Schmutzwasserabf			Qs24		0,32		0,32	0,00	l/s				
Fremdwasserabflus	ss		Qf24		0,29		0,29	0,00	l/s				
Trockenwetterabflu	SS		Qt24		0,60		0,60	0,00	l/s				
			Tagessi	oitze									
häuslicher Schmutz	zwasserabfl	luss	Qhx		0,95		0,95	0.00	l/s				
gewerblicher Schm	utzwassera	abfluss	Qgx		0,00		0,00	0,00	l/s				
Schmutzwasserabf	luss		Qsx		0,95		0,95	0,00	l/s				
Trockenwetterabflu	SS		Qtx		1,23		1,23	0,00	l/s				
Regenwette	rabflus	S			Zulauf		Ablauf	Abschlag					
unabgeminderter R			Qr15	-	711,91		0,00	0.00	1/9				
abgeminderter Reg			Qr		711,91		0,00	0,00					
unabminderbarar R		is	uQr		0,00		4,90	707,01	l/s				
längste Fliesszeit	- 9		LTf		4,00		4,00	0,00	min				
maßgebliche Fliess	zeit		Tf		4,00		0,00	0,00	min				
Zeitbeiwert			PHI		1,00		1,00	1,00	-				
Regenabfluss aus	<u> Trenn</u> syster	m	QrT24		0,00		0,00	0,00	l/s				
Einzugsgeb					Zulauf		Ablauf	Abschlag					
Einzugsgebietsfläch			AE		15,94		0,00	0.00	ha				
Linzugagebietailati	10		Sum AE		15,94		15,94	0,00	ha				
undurchlässige Flä	che		Au		4,78		0,00	0,00					
ariadi oriidosiye i Ta	0.10		Sum Au		4,78		4,78	0,00					
mittlere Geländene	iaunasarup	pe	NGm		2,50		2,50	0.00	-				
Nachweis A		PO			2,00		2,00	0,00					
	120		0.0										
Drosselabfluß			QD		5,50	l/s	,	Auslastungs		anlage	n	5,51	-
Regenabfluss 24-h			Qr24		4,90	l/(s*h	•	Einflusswei				0.00	
Regenabflußspend			qr		1,02	l/(s*h	•	Jahresniede			ah	-0,09	
Trockenwetter-Abflu		huna	qt		0,13	l/(s*h	a)	TW-Konzent			ac	1,00	
mittl. Regenabfluss mittleres Mischverh		lung	Qre		29,44	l/s		Kanalablage		ungon	aa	0,55	
erforderliches Misch			m m orf		48,86 7,00	-		xa-Wert Kan			xa af	11,72 · 0,98 ·	
zulässige Entlastun			m_erf e0		70,57	<u>-</u> %		Fließzeit-Abı CSB-Konze			aı	0,90	-
spezifisches Speich		1	VS		5,10	m^3/l	าว	Trockenwett		"	ct	366,67	mg/l
erforderl. Speicher			V		24,38	m^3	ıa	Regenwasse			cr		mg/l
Summe erforderl. S		umen	Sum V		24,38	m^3		Bemessung	7 1		cb		mg/l
vorhandenes Speic			VOL		27,00	m^3		Entlastung			ce		mg/l
max. Klärüberlauf		•	maxQKÜ	3	300.00	l/s		Littaotang				122,10	9/1
kritischer Regenabf	fluss		Qrkrit	`	71,73								
kritischer Mischwas			Qkrit			_							
Lage													
Rechtswert			D\A/		0.00			Hookwort	⊔\ \//		0.00		
Gelände			RW Gel		0,00	- mNN		Hochwert Strasse	HW		0,00	-	
	.1.17	1 1			0,00	IIIININ		Suasse					
Frachten un													
Regenabflußspend		0	0,5	1		2	4		16	32	64	128	
Mischwasserzufluß		0,60	2,99	5,38		,17	19,73		77,11	153,63	306,65	612,70	
Zuflußfracht	BSB5	126	249	302		<u> 407</u>	618		1.885	3.573	6.950	13.705	
	NH4-N	22	36	49		75	128	233	445	867	1.711	3.399	
7. 41. 01	AFS	158	667	1.090		934	3.622		13.754	27.262	54.279	108.312	
Zuflußkonzentration		209,53	83,19	56,05		,07	31,34		24,44	23,26	22,67	22,37	mg/l
	NH4-N	37,19	11,89	9,06		,39	6,48		5,76	5,64	5,58	5,55	mg/l
	AFS	261,91	222,97	202,36	190		183,59	180,13	178,35	177,46	177,00	176,78	
	pH-Wert	7,20	7,36	7,38		,39	7,39		7,40	7,40	7,40	7,40	
	Alkalinität QR	2,52 0,00	2,90 2,39	2,95 4,78		,97 ,90	2,99 4,90		3,00 4,90	3,00 4,90	3,00 4,90	3,00 4,90	
Pogonahflui		0,00		5,38					5,50		5,50	5,50	
Regenabfluß Mischwasserabfluß			2,99	302		,50 220	5,50 172		134	5,50 128	125	123	
Mischwasserabfluß		126		302									
	BSB5	126	249			41	ろと	3.3				.5.1	
Mischwasserabfluß	BSB5 NH4-N	22	36	49		41	36 1 010		32 981	976	31 974	972	
Mischwasserabfluß Abflußfracht	BSB5 NH4-N AFS	22 158	36 667	49 1.090	1.0	046	1.010	991	981	976	974	972	mg/s
Mischwasserabfluß	BSB5 NH4-N AFS rBSB5	22 158 209,53	36 667 83,19	49 1.090 56,05	1.0 40	046 ,07	1.010 31,34	991 26,78	981 24,44	976 23,26	974 22,67	972 22,37	mg/s mg/l
Mischwasserabfluß Abflußfracht	BSB5 NH4-N AFS BSB5 NH4-N	22 158 209,53 37,19	36 667 83,19 11,89	49 1.090 56,05 9,06	1.0 40 7	046 ,07 ,39	1.010 31,34 6,48	991 26,78 6,01	981 24,44 5,76	976 23,26 5,64	974 22,67 5,58	972 22,37 5,55	mg/s mg/l mg/l
Mischwasserabfluß Abflußfracht	BSB5 NH4-N AFS BSB5 NH4-N AFS	22 158 209,53 37,19 261,91	36 667 83,19 11,89 222,97	49 1.090 56,05 9,06 202,36	1.0 40 7 190	046 ,07 ,39 ,22	1.010 31,34 6,48 183,59	991 26,78 6,01 180,13	981 24,44 5,76 178,35	976 23,26 5,64 177,46	974 22,67 5,58 177,00	972 22,37 5,55 176,78	mg/s mg/l mg/l mg/l
Mischwasserabfluß Abflußfracht	BSB5 NH4-N AFS BSB5 NH4-N	22 158 209,53 37,19	36 667 83,19 11,89	49 1.090 56,05 9,06	1.0 40 7 190 7	046 ,07 ,39	1.010 31,34 6,48	991 26,78 6,01 180,13 7,40	981 24,44 5,76	976 23,26 5,64	974 22,67 5,58	972 22,37 5,55	mg/s mg/l mg/l mg/l

Rothenburg o.d.T	Projekt-Nummer:	2
Prognosezustand	Auftraggeber:	Stadt Rothenburg o.d.T.

RUB.Gebsattel	Tomoom:44-	I Zulauf	Ablauf	Abschlag								
Trockenwetterabfluss	Tagesmitte			ŭ								
Einwohnerzahl	EZ	2.010	2.010		E							
häuslicher Schmutzwasserabfluss	Qh24	2,68	2,68	0,00								
gewerblicher Schmutzwasserabfluss	Qg24	0,00	0,00	0,00								
Schmutzwasserabfluss	Qs24	2,68	2,68	0,00								
Fremdwasserabfluss	Qf24	1,43	1,43	0,00								
Trockenwetterabfluss	Qt24	4,11	4,11	0,00	I/S							
	Tagesspitze											
häuslicher Schmutzwasserabfluss	Qhx	6,49	6,49	0,00								
gewerblicher Schmutzwasserabfluss	Qgx	0,00	0,00	0,00								
Schmutzwasserabfluss	Qsx	6,49	6,49	0,00								
Trockenwetterabfluss	Qtx	7,92	7,92	0,00	l/s							
Regenwetterabfluss		Zulauf	Ablauf	Abschlag								
unabgeminderter Regenabfluss	Qr15	3.150,42	0,00	0,00	l/s							
abgeminderter Regenabfluss	Qr	2.607,24	0,00	0,00	l/s							
unabminderbarar Regenabfluss	uQr	0,00	12,39	2.594,85	l/s							
längste Fliesszeit	LTf	20,00	20,00	0,00	min							
maßgebliche Fliesszeit	Tf	20,00	0,00	0,00	min							
Zeitbeiwert	PHI	0,83	1,00	1,00	-							
Regenabfluss aus Trennsystem	QrT24	0,00	0,00	0,00	l/s							
Einzugsgebiet		Zulauf	Ablauf	Abschlag								
Einzugsgebietsfläche	AE	64,45	0,00	0,00	ha							
9-9	Sum AE	64,45	64,45	0,00								
undurchlässige Fläche	Au	23,85	0,00	0,00								
ŭ	Sum Au	23,85	23,85	0,00								
mittlere Geländeneigungsgruppe	NGm	2,00	2,00	0,00								
Nachweis A128												
Drosselabfluß	QD	16,50	I/s	Auslastungs	wort Klärar	alago	n	2,32 -				
Regenabiliuss 24-h-Mittel	Qr24	12,39	l/(s*ha)	Einflusswer		llaye	11	2,32 -	'			
Regenabflußspende	qr	0,52	, ,	Jahresniede			ah	-0,09 -				
Trockenwetter-Abflußspende	qt	0,32	l/(s*ha)	TW-Konzent	0		ac	1,00 -				
mittl. Regenabfluss bei Entlastung	Qre	101,93		Kanalablage			aa	0,53 -				
mittleres Mischverhältnis	m	24,82	-	xa-Wert Kan		ngen	ха	12,45 -				
erforderliches Mischverhältnis	m erf	7,00	_	Fließzeit-Abr		ngon	af	0,92 -				
zulässige Entlastungsrate	e0	55,94	%	CSB-Konze		,	a.	0,02				
spezifisches Speichervolumen	VS V	VS			17,54	m^3/ha	Trockenwett			ct	456,08 n	ng/l
erforderl. Speichervolumen			418,15	m^3	Regenwasse			cr		ng/l		
Summe erforderl. Speichervolumen	Sum V	418,15	m^3	Bemessung Entlastung			cb		ng/l			
vorhandenes Speichervolumen	VOL	414,00	m^3			ce		ng/l				
max. Klärüberlauf	maxQKÜ	2.500,00	l/s				•	Ü				
kritischer Regenabfluss	Qrkrit	357,70	l/s									
kritischer Mischwasserabfluss	Qkrit	361,80	-									
Lage												
Rechtswert	RW	0.00	_	Hochwert	HW		0.00	_				
Gelände	Gel	,	mNN	Strasse			0,00					
Frachten und Konzentrat		-,										
		1	2 4	O	16	30	G A	400	1//0*6-			
Regenabflußspenderab 0 Mischwasserzufluß QM 4,11	0,5 16,03 27	<u>1</u> ',95 51	2 4 ,80 99,49		16 385,65	767,19	1.530,28	3.056,46	_l/(s*ha) _l/s			
Zuflußfracht BSB5 1.070			,80 99,49 686 3.738		10.053	18.474	35.314	68.995				
NH4-N 190			453 716		2.295	4.400	8.610	17.031	mg/s			
AFS 1.338		252 10.4				136.766	271.490	540.939	mg/s			
ZuflußkonzentrationBSB5 260,62		,25 10.4 7,25 51	,85 37,57	29,98	26,07	24,08	23,08	22,57	mg/l			
NH4-N 46,26	15,95 11		5,75 7,20		5,95	5,74	5,63	5,57	mg/l			
AFS 325,77		3,65 201	,97 189,78		179,97	178,27	177,41	176,98	mg/l			
pH-Wert 7,25			7,39 7,39		7,40	7,40	7,40		-			
Alkalinität 2,65		2,95 2	,97 2,99	2,99	3,00	3,00	3,00					
			,39 12,39		12,39	12,39	12,39		I/s			
Regenabfluß QR 0,00			,50 16,50		16,50	16,50	16,50		l/s			
Regenabfluß QR 0,00 Mischwasserabfluß QM 4,11	10,00 10		356 620		430	397	381	372	mg/s			
Mischwasserabfluß QM 4,11 Abflußfracht BSB5 1.070		275			98	95	93	92	mg/s			
Mischwasserabfluß QM 4,11 Abflußfracht BSB5 1.070 NH4-N 190	1.896 1. 256	190	144 119	105	90							
Mischwasserabfluß QM 4,11 Abflußfracht BSB5 1.070 NH4-N 190 AFS 1.338	1.896 1. 256 4.147 3.	190 690 3.3	144 119 332 3.131	3.025	2.969	2.941	2.927	2.920	mg/s			
Mischwasserabfluß QM 4,11 Abflußfracht BSB5 1.070 NH4-N 190 AFS 1.338 AbflußkonzentratiorBSB5 260,62	1.896 1. 256 4.147 3. 118,30 77	190 690 3.3 7,25 51	144 119 332 3.131 ,85 37,57	3.025 29,98	2.969 26,07	2.941 24,08	2.927 23,08	2.920 22,57	mg/s mg/l			
Mischwasserabfluß QM 4,11 Abflußfracht BSB5 1.070 NH4-N 190 AFS 1.338 AbflußkonzentratiorBSB5 260,62 NH4-N 46,26	1.896 1. 256 4.147 3. 118,30 77 15,95 11	190 690 3.3 7,25 51 7,50 8	144 119 332 3.131 ,85 37,57 5,75 7,20	3.025 29,98 6,38	2.969 26,07 5,95	2.941 24,08 5,74	2.927 23,08 5,63	2.920 22,57 5,57	mg/l mg/l			
Mischwasserabfluß QM 4,11 Abflußfracht BSB5 1.070 NH4-N 190 AFS 1.338 AbflußkonzentratiorBSB5 260,62 NH4-N 46,26 AFS 325,77	1.896 1. 256 4.147 3. 118,30 77 15,95 11 258,68 223	190 690 3.3 7,25 51 8,50 8 8,65 201	144 119 332 3.131 ,85 37,57 5,75 7,20 ,97 189,78	3.025 29,98 6,38 183,31	2.969 26,07 5,95 179,97	2.941 24,08 5,74 178,27	2.927 23,08 5,63 177,41	2.920 22,57 5,57 176,98	mg/l mg/l			
Mischwasserabfluß QM 4,11 Abflußfracht BSB5 1.070 NH4-N 190 AFS 1.338 AbflußkonzentratiorBSB5 260,62 NH4-N 46,26	1.896 1. 256 4.147 3. 118,30 77 15,95 11 258,68 223 7,36 7	190 690 3.3 7,25 51 7,50 8 8,65 201 7,38 7	144 119 332 3.131 ,85 37,57 5,75 7,20	3.025 29,98 6,38 183,31 7,40	2.969 26,07 5,95	2.941 24,08 5,74	2.927 23,08 5,63	2.920 22,57 5,57 176,98 7,40	mg/l mg/l			

o-a-u ing.ges.n	mbH	Lindbergh	str. 5		82178	Puchheim			Telefon: 089-2155	33-100 Fax: ()89-21553310	
Ergebnisse Hydrologie	Einzugsgebiete	Projekt-Be Projekt-Nu	_	nenburg o.d.T				ojekt-Variante: uftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.			
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]	
Simulation	<u>Gesamtsystem</u>	***	0,00	0,00	0,00	einzeln kumuliert	0 25.803.045	0 12.343.053	0 3.953.497	0 9.506.495	39.746	
lahresmittel	Gesamtsystem (365 Tage)	***	0,00	0,00	0,00	einzeln kumuliert	0 2.345.147	0 1.121.816	0 359.319	0 864.012	3.612	
Simulation	KEM.Bettenfeld	KEM	7.543,80	3.984,17	0,53	einzeln kumuliert	399.648 399.648	109.544 109.544	99.581 99.581	190.523 190.523	39.842	
.М.	KEM.Bettenfeld	KEM	685,63	362,11	0,53	einzeln kumuliert	36.323 36.323	9.956 9.956	9.051 9.051	17.316 17.316	3.62′	
Simulation	KEM.Gebsattel	KEM	7.543,80	3.957,82	0,52	einzeln kumuliert	2.368.912 2.368.912	928.530 928.530	496.582 496.582	943.801 943.801	39.578	
М.	KEM.Gebsattel	KEM	685,63	359,71	0,52	einzeln kumuliert	215.302 215.302	84.391 84.391	45.133 45.133	85.779 85.779	3.597	
Simulation	KES.652-661	KES	7.543,80	0,00	0,00	einzeln kumuliert	239.369 239.369	149.131 149.131	90.238 90.238	0	(
М.	KES.652-661	KES	685,63	0,00	0,00	einzeln kumuliert	21.755 21.755	13.554 13.554	8.201 8.201	0	(
Simulation	KEM.606	KEM	7.543,80	3.957,82	0,52	einzeln kumuliert	204.493 443.862	36.876 186.007	34.912 125.149	132.706 132.706	39.578	
М.	KEM.606	KEM	685,63	359,71	0,52	einzeln kumuliert	18.586 40.341	3.352 16.906	3.173 11.374	12.061 12.061	3.597	
Simulation	KES.663	KES	7.543,80	0,00	0,00	einzeln kumuliert	111.279 111.279	83.513 83.513	27.765 27.765	0	0	

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

Detaillierter Nachweis

Erstellungszeitpunkt: 01.05.2021 17:42:30

Seite

b-a-u ing.ges.r	mbH	Lindbergh	ıstr. 5		82178	3 Puchheim		Telefon: 089-2155	533-100 Fax: 0)89-21553310		
Ergebnisse Hydrologie	e Einzugsgebiete	Projekt-Be Projekt-Ni	_	nenburg o.d.T				ojekt-Variante: ftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.			
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]	
i.M.	KES.663	KES	685,63	0,00	0,00	einzeln kumuliert	10.114 10.114	7.590 7.590	2.524 2.524	0	0	
Simulation	KEM.608	KEM	7.543,80	3.957,82	0,52	einzeln	1.733.247	797.173	243.080	692.994	39.578	
						kumuliert	1.844.526	880.687	270.845	692.994	C	
i.M.	KEM.608	KEM	685,63	359,71	0,52	einzeln kumuliert	157.529 167.642	72.452 80.043	22.093 24.616	62.984 62.984	3.597 0	
Simulation	Wachsenberg	KEM	7.543,80	3.957,82	0,52	einzeln kumuliert	289.081 289.081	58.809 58.809	34.360 34.360	195.912 195.912	39.578	
i.M.	Wachsenberg	KEM	685,63	359,71	0,52	einzeln kumuliert	26.274 26.274	5.345 5.345	3.123 3.123	17.806 17.806	3.597	
Simulation	KEM.Neusitz	KEM	7.543,80	4.003,80	0,53	einzeln kumuliert	2.436.303 2.626.057	828.145 886.954	237.611 271.971	1.370.547 1.467.132	40.038	
i.M.	KEM.Neusitz	KEM	685,63	363,89	0,53	einzeln kumuliert	221.427 238.673	75.267 80.612	21.596 24.718	124.564 133.342	3.639	
Simulation	KEM.6	KEM	7.543,80	3.957,82	0,52	einzeln kumuliert	3.923.331 5.491.278	1.489.684 2.370.371	631.970 902.815	1.801.677 2.218.092	39.578	
i.M.	KEM.6	KEM	685,63	359,71	0,52	einzeln kumuliert	356.578 499.083	135.392 215.435	57.437 82.054	163.748 201.595	3.597	
Simulation	<u>KES.6</u>	KES	7.543,80	0,00	0,00	einzeln kumuliert	1.134.806 1.134.806	791.208 791.208	343.598 343.598	0	(
i.M.	<u>KES.6</u>	KES	685,63	0,00	0,00	einzeln kumuliert	103.138 103.138	71.910 71.910	31.228 31.228	0	(

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

Detaillierter Nachweis

Erstellungszeitpunkt: 01.05.2021 17:42:30

Seite

b-a-u ing.ges.	.mbH	Lindbergh	str. 5		82178	3 Puchheim			Telefon: 089-215533-100 Fax: 089-215533109				
Ergebnisse Hydrologi e	e Einzugsgebiete	Projekt-Be Projekt-No	0	henburg o.d.T				Projekt-Variante: Auftraggeber:		Prognosezustand Stadt Rothenburg o.d.T.			
Zeitraum	Element	Тур	N [mm]	Neff [mm]	PSI [-]		Qges [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	qr [cbm/ha]		
0:	VEO 5	KES											
Simulation	<u>KES.5</u>	KES	7.543,80	0,00	0,00	einzeln kumuliert	18.004 18.004	7.592 7.592	10.412 10.412	0	C		
i.M.	<u>KES.5</u>	KES	685,63	0,00	0,00	einzeln	1.636	690	946	0	0		
						kumuliert	1.636	690	946	0	0		
Simulation	KEM.5	KEM	7.543,80	3.973,41	0,53	einzeln	4.811.243	2.673.514	443.866	1.693.864	39.734		
						kumuliert	4.829.247	2.681.106	454.278	1.693.864	C		
i.M.	KEM.5	KEM	685,63	361,13	0,53	einzeln	437.277	242.986	40.341	153.949	3.611		
						kumuliert	438.913	243.676	41.288	153.949	C		
Simulation	KEM.4	KEM	7.543,80	3.984,17	0,53	einzeln	1.830.831	1.190.337	95.032	545.461	39.842		
						kumuliert	1.830.831	1.190.337	95.032	545.461	C		
i.M.	KEM.4	KEM	685,63	362,11	0,53	einzeln	166.398	108.186	8.637	49.575	3.621		
						kumuliert	166.398	108.186	8.637	49.575	C		
Simulation	<u>Leuzenbronn</u>	KEM	7.543,80	3.957,82	0,52	einzeln	317.598	119.847	75.217	122.534	39.578		
						kumuliert	317.598	119.847	75.217	122.534	0		
i.M.	<u>Leuzenbronn</u>	KEM	685,63	359,71	0,52	einzeln	28.865	10.892	6.836	11.137	3.597		
						kumuliert	28.865	10.892	6.836	11.137	0		
Simulation	KES.3	KES	7.543,80	0,00	0,00	einzeln	436.547	297.720	138.827	0	C		
						kumuliert	436.547	297.720	138.827	0	C		
i.M.	KES.3	KES	685,63	0,00	0,00	einzeln	39.676	27.059	12.618	0	0		
						kumuliert	39.676	27.059	12.618	0	0		
Simulation	KEM.3	KEM	7.543,80	3.983,63	0,53	einzeln	2.801.085	1.191.964	415.849	1.193.272	39.836		
						kumuliert	3.237.632	1.489.684	554.676	1.193.272	0		

Lizenz-Nr. 036-300-1405-185

BWK Verena.M7

Detaillierter Nachweis

Erstellungszeitpunkt: 01.05.2021 17:42:30

Seite

o-a-u ing.ges.	.mbH	Lindbergh	str. 5		82178	Puchheim			Telefon: 089-21553	33-100 Fax: 0	89-21553310		
Ergebnisse Hydrologi e	e Einzugsgebiete	Projekt-Bezeichnung: Rothenburg o.d.T Projekt-Nummer: 2				•				Prognosezustand Stadt Rothenburg o.d.T.			
Zeitraum	Element	Тур	N	Neff	PSI		Qges	QS	QF	QR	qr		
			[mm]	[mm]	[-]		[cbm]	[cbm]	[cbm]	[cbm]	[cbm/ha]		
i.M.	KEM.3	KEM	685,63	362,06	0,53	einzeln	254.581	108.333	37.795	108.452	3.621		
						kumuliert	294.257	135.392	50.413	108.452	0		
Simulation	KES.2	KES	7.543,80	0,00	0,00	einzeln	303.143	199.022	104.120	0	0		
						kumuliert	303.143	199.022	104.120	0	0		
i.M.	KES.2	KES	685,63	0,00	0,00	einzeln	27.552	18.088	9.463	0	0		
						kumuliert	27.552	18.088	9.463	0	0		
Simulation	KEM.2	KEM	7.543,80	3.988,57	0,53	einzeln	1.508.903	753.790	194.966	560.147	39.886		
						kumuliert	1.812.046	952.812	299.087	560.147	0		
i.М.	KEM.2	KEM	685,63	362,51	0,53	einzeln	137.139	68.509	17.720	50.910	3.625		
						kumuliert	164.690	86.598	27.183	50.910	0		
Simulation	Westl-OT	KES	7.543,80	0,00	0,00	einzeln	367.676	159.435	208.241	0	0		
						kumuliert	367.676	159.435	208.241	0	0		
.М.	Westl-OT	KES	685,63	0,00	0,00	einzeln	33.417	14.490	18.926	0	0		
						kumuliert	33.417	14.490	18.926	0	0		
Simulation	KEM.1	KEM	7.543,80	4.012,53	0,53	einzeln	567.547	477.220	27.271	63.057	40.125		
						kumuliert	567.547	477.220	27.271	63.057	0		
М.	KEM.1	KEM	685,63	364,68	0,53	einzeln	51.582	43.373	2.479	5.731	3.647		
						kumuliert	51.582	43.373	2.479	5.731	0		

b-a-u ing.ges.mbH		Lindberghstr. 5			elefon: 089-215533-100 Fax: 089-215533109							
Ergebnisse Hydrologie A12	28	Projekt-Bezeichnung Projekt-Nummer:	g: Rothenbu	ırg o.d.T			Projekt-\ Auftragg	/ariante: Prog eber: Stac	gnosezustand dt Rothenburg o.	d.T.		
Zeitraum	Element	QZU [cbm]	QD [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	QKUE [cbm]	TKUE [h]	QBUE [cbm]	TBUE [h]	n [1/a]	e0 [%]
Simulation	<u>Gesamtsystem</u>	50.841.292	46.985.614	26.061.908	8.373.807	16.405.577	3.839.297	6.546,52	16.381	4,60	2.303	23,50
Jahresmittel	Gesamtsystem (365 Tage)	4.620.785	4.270.356	2.368.674	761.066	1.491.045	348.940	594,99	1.489	0,42	209	23,50
Simulation	RUB.Bettenfeld	399.648	307.447	109.544	99.581	190.523	91.965	641,19	235	0,25	384	48,39
i.M.	RUB.Bettenfeld	36.323	27.943	9.956	9.051	17.316	8.358	58,28	21	0,02	35	48,39
Simulation	RUB.Gebsattel	2.368.912	1.958.632	928.530	496.582	943.801	409.216	821,12	1.065	0,37	200	43,47
i.M.	RUB.Gebsattel	215.302	178.013	84.391	45.133	85.779	37.192	74,63	97	0,03	18	43,47
Simulation	RU.6.3 (ehm. RÜ8)	443.862	440.982	186.007	125.149	132.706	2.880	7,37	0	0,00	24	2,17
i.M.	RU.6.3 (ehm. RÜ8)	40.341	40.079	16.906	11.374	12.061	262	0,67	0	0,00	2	2,17
Simulation	RUB.Kaiserweg	1.844.526	1.567.947	880.687	270.845	692.994	276.508	561,96	71	0,10	197	39,91
i.M.	RUB.Kaiserweg	167.642	142.505	80.043	24.616	62.984	25.131	51,07	6	0,01	18	39,91
Simulation	RÜB Wachsenberg	289.081	189.754	58.809	34.360	195.912	99.101	749,35	225	0,25	297	50,70
i.M.	RÜB Wachsenberg	26.274	17.246	5.345	3.123	17.806	9.007	68,11	20	0,02	27	50,70
Simulation	RUB.Neusitz	2.626.057	1.827.263	886.954	271.971	1.467.132	786.359	1.068,52	12.435	2,71	315	54,45
i.M.	RUB.Neusitz	238.673	166.073	80.612	24.718	133.342	71.469	97,11	1.130	0,25	29	54,45
Simulation	RUB.6	8.894.329	8.259.074	4.234.540	1.643.533	3.016.257	635.255	498,56	0	0,00	115	21,06
i.M.	RUB.6	808.374	750.638	384.862	149.375	274.137	57.736	45,31	0	0,00	10	21,06
Simulation	RUB.5	4.829.247	4.175.783	2.681.106	454.278	1.693.864	652.152	534,58	1.312	0,19	160	38,58
i.M.	RUB.5	438.913	379.522	243.676	41.288	153.949	59.272	48,59	119	0,02	15	38,58
Simulation	RUB.4	1.830.831	1.627.416	1.190.337	95.032	545.461	202.517	467,42	898	0,48	201	37,29
BWK Verena.M7	Detaillierter Nachweis	Lizenz-Nr. 036-300-	-1405-185				Erstellungsze	itpunkt: 01.0	05.2021 17:42:30	1		Seite

b-a-u ing.ges.m	nbH	Lindberghstr. 5			82178 Puch	heim		Telef	on: 089-21553	3-100 Fax	: 089-215	533109
Ergebnisse Hydrologie	A128	Projekt-Bezeichnung Projekt-Nummer:	: Rothenbu 2	rg o.d.T			Projekt-V Auftragge	O	nosezustand t Rothenburg c	o.d.T.		
Zeitraum	Element	QZU [cbm]	QD [cbm]	QS [cbm]	QF [cbm]	QR [cbm]	QKUE [cbm]	TKUE [h]	QBUE [cbm]	TBUE [h]	n [1/a]	e0 [%]
i.M.	RUB.4	166.398	147.910	108.186	8.637	49.575	18.406	42,48	82	0,04	18	37,29
Simulation	RUB.Leuzenbronn	317.598	283.602	119.847	75.217	122.534	33.856	275,96	139	0,25	106	27,74
i.M.	RUB.Leuzenbronn	28.865	25.776	10.892	6.836	11.137	3.077	25,08	13	0,02	10	27,74
Simulation	RUB.3	3.237.632	2.785.971	1.489.684	554.676	1.193.272	451.662	487,23	0	0,00	159	37,85
i.M.	RUB.3	294.257	253.207	135.392	50.413	108.452	41.050	44,28	0	0,00	14	37,85
Simulation	RUB.2	1.812.046	1.614.378	952.812	299.087	560.147	197.667	431,65	0	0,00	143	35,29
i.M.	RUB.2	164.690	146.725	86.598	27.183	50.910	17.965	39,23	0	0,00	13	35,29
Simulation	RUB.1	21.947.524	21.947.366	12.343.052	3.953.497	5.650.975	158	1,60	0	0,00	2	0,00
i.M.	RUB.1	1.994.733	1.994.718	1.121.816	359.319	513.597	14	0,15	0	0,00	0	0,00

b-a-u ing.ges.mbH		Lindberghstr.	5		82178	Puchheim			Telefon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Bauwerke		Projekt-Beze Projekt-Numi	_	enburg o.d.T				ojekt-Variante: ıftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.	
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
RUB.Bettenfeld	Zulauf	399.648	45.920	8.198	71.590	97.066	70.223	101.969	4.448,71	
Typ RUB	ВÜ	235	3	1	21	25	3	21	0,25	
Zeitraum Simulation	KÜ	91.965	1.288	251	8.356	10.196	1.447	8.555	641,19	
	Abfluss	307.447	44.630	7.947	63.214	86.846	68.773	93.393	9.299,06	
RUB.Bettenfeld	Zulauf	36.323	4.173	745	6.507	8.822	6.382	9.268	404,33	
Typ RUB	ВÜ	21	0	0	2	2	0	2	0,02	
Zeitraum <i>i.M.</i>	ΚÜ	8.358	117	23	759	927	132	778	58,28	
	Abfluss	27.943	4.056	722	5.745	7.893	6.250	8.488	845,16	
OMA.Bettenfeld	Zulauf	92.201	1.290	252	8.376	10.221	1.450	8.576	641,19	
Тур ОМА	ВÜ	786	9	2	69	84	9	69	1,04	
Zeitraum Simulation	ΚÜ	17.629	213	42	1.572	1.910	223	1.585	47,75	
	Abfluss	73.786	214	83	674	1.645	244	692	1.093,12	
OMA.Bettenfeld	Zulauf	8.380	117	23	761	929	132	779	58,28	
Тур ОМА	ВÜ	71	1	0	6	8	1	6	0,09	
Zeitraum <i>i.M.</i>	ΚÜ	1.602	19	4	143	174	20	144	4,34	
	Abfluss	6.706	19	8	61	150	22	63	99,35	
RUB.Gebsattel	Zulauf	2.368.912	381.826	68.008	547.580	750.957	577.242	791.849	8.461,38	
Typ RUB	ВÜ	1.065	12	2	94	114	12	94	0,37	
Zeitraum Simulation	ΚÜ	409.216	8.523	1.610	39.958	49.416	10.723	42.708	821,12	
	Abfluss	1.958.632	373.292	66.396	507.528	701.428	566.507	749.047	19.753,23	

b-a-u ing.ges.mbH		Lindberghstr.	5		82178	Puchheim			Telefon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Bauwerke		Projekt-Beze Projekt-Numi	ichnung: Roth mer: 2	nenburg o.d.T				ojekt-Variante: uftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
RUB.Gebsattel	Zulauf	215.302	34.703	6.181	49.768	68.252	52.463	71.968	769,02	
Typ RUB	ВÜ	97	1	0	9	10	1	9	0,03	
Zeitraum i.M.	KÜ	37.192	775	146	3.632	4.491	975	3.882	74,63	
	Abfluss	178.013	33.927	6.034	46.127	63.750	51.488	68.078	1.795,30	
RU.6.3 (ehm. RÜ8)	Zulauf	443.862	75.867	13.499	104.718	144.404	79.669	109.471	4.719,23	
Typ RU	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	KÜ	2.880	33	7	255	310	33	256	7,37	
	Abfluss	440.982	75.834	13.493	104.463	144.094	79.636	109.215	12.575,38	
RU.6.3 (ehm. RÜ8)	Zulauf	40.341	6.895	1.227	9.517	13.124	7.241	9.949	428,91	
Typ RU	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum i.M.	KÜ	262	3	1	23	28	3	23	0,67	
	Abfluss	40.079	6.892	1.226	9.494	13.096	7.238	9.926	1.142,93	
RUB.Kaiserweg	Zulauf	1.844.526	359.922	64.058	501.518	690.631	482.703	654.995	6.286,50	
Typ RUB	ВÜ	71	1	0	6	8	1	6	0,10	
Zeitraum Simulation	KÜ	276.508	5.533	1.049	26.886	33.194	6.430	28.008	561,96	
	Abfluss	1.567.947	354.388	63.009	474.625	657.430	476.273	626.981	15.725,79	
RUB.Kaiserweg	Zulauf	167.642	32.712	5.822	45.581	62.769	43.871	59.530	571,36	
Typ RUB	ВÜ	6	0	0	1	1	0	1	0,01	
Zeitraum i.M.	KÜ	25.131	503	95	2.444	3.017	584	2.546	51,07	
	Abfluss	142.505	32.209	5.727	43.137	59.751	43.287	56.984	1.429,26	

b-a-u ing.ges.mbH		Lindberghstr.	5		82178	Puchheim			Telefon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Bauwerke		Projekt-Bezei Projekt-Numr	ichnung: Roth mer: 2	nenburg o.d.T				ojekt-Variante: ıftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.	
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
OMA.Kaiserweg	Zulauf	276.579	5.533	1.049	26.893	33.202	6.431	28.014	561,96	
Тур ОМА	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	KÜ	1.391	16	3	124	150	17	124	0,83	
	Abfluss	275.188	2.759	732	2.677	31.399	3.207	2.789	579,79	
OMA.Kaiserweg	Zulauf	25.137	503	95	2.444	3.018	584	2.546	51,07	
Тур ОМА	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	KÜ	126	1	0	11	14	2	11	0,08	
	Abfluss	25.011	251	67	243	2.854	291	253	52,70	
RÜB Wachsenberg	Zulauf	289.081	25.685	4.608	46.699	56.248	39.478	63.940	4.817,25	
Typ RUB	ВÜ	225	2	0	20	24	2	20	0,25	
Zeitraum Simulation	KÜ	99.101	1.396	272	9.034	10.945	1.582	9.266	749,35	
	Abfluss	189.754	24.287	4.335	37.645	45.278	37.894	54.654	14.429,62	
RÜB Wachsenberg	Zulauf	26.274	2.334	419	4.244	5.112	3.588	5.811	437,82	
Typ RUB	ВÜ	20	0	0	2	2	0	2	0,02	
Zeitraum <i>i.M.</i>	KÜ	9.007	127	25	821	995	144	842	68,11	
	Abfluss	17.246	2.207	394	3.421	4.115	3.444	4.967	1.311,46	
RUB.Neusitz	Zulauf	2.626.057	370.668	66.158	572.703	688.814	571.122	823.272	12.579,15	
Typ RUB	ВÜ	12.435	139	28	1.099	1.332	140	1.100	2,71	
Zeitraum Simulation	KÜ	786.359	11.753	2.279	72.498	87.827	13.552	74.748	1.068,52	
	Abfluss	1.827.263	358.776	63.852	499.107	599.655	557.430	747.424	22.710,27	

b-a-u ing.	ges.mbH		Lindberghsti	7. 5		82178	3 Puchheim			Telefon: 089-215533-100	Fax: 089-215533109
Ergebniss Frachte	e n Bauwerke		Projekt-Beze Projekt-Num	eichnung: Roti	nenburg o.d.1	-			ojekt-Variante uftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.	
			Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
RUB.Neus	<u>itz</u>)	Zulauf	238.673	33.689	6.013	52.051	62.604	51.907	74.824	1.143,27	
Тур	RUB	ВÜ	1.130	13	3	100	1 <mark>21</mark>	13	100	0,25	
Zeitraum	i.M.	KÜ	71.469	1.068	207	6.589	7.982	1.232	6.794	97,11	
		Abfluss	166.073	32.608	5.803	45.362	54.500	50.663	67.931	2.064,06	
RUB.6		Zulauf	8.894.329	1.721.236	306.273	2.377.685	3.190.583	2.269.282	3.062.743	19.927,29	
Тур	RUB	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum	Simulation	ΚÜ	635.255	10.989	2.105	59.954	73.587	12.059	61.290	498,56	
		Abfluss	8.259.074	1.710.247	304.169	2.317.732	3.116.996	2.257.224	3.001.453	23.685,37	
RUB.6		Zulauf	808.374	156.437	27.836	216.099	289.981	206.247	278.362	1.811,12	
Тур	RUB	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum	i.M.	KÜ	57.736	999	191	5.449	6.688	1.096	5.570	45,31	
		Abfluss	750.638	155.438	27.645	210.650	283.293	205.151	272.791	2.152,68	
RUB.5		Zulauf	4.829.247	1.091.133	194.097	1.490.080	2.058.017	1.483.449	1.980.475	6.434,52	
Тур	RUB	ВÜ	1.312	15	3	116	141	15	116	0,19	
Zeitraum	Simulation	KÜ	652.152	11.785	2.250	62.274	76.597	13.520	64.443	534,58	
		Abfluss	4.175.783	1.079.333	191.843	1.427.690	1.981.279	1.469.914	1.915.916	18.623,25	
RUB.5		Zulauf	438.913	99.169	17.641	135.428	187.046	134.825	179.998	584,81	
Тур	RUB	ВÜ	119	1	0	11	13	1	11	0,02	
Zeitraum	i.M.	ΚÜ	59.272	1.071	205	5.660	6.962	1.229	5.857	48,59	
		Abfluss	379.522	98.097	17.436	129.758	180.071	133.595	174.131	1.692,60	

b-a-u ing.ges.mbH		Lindberghstr	. 5		82178	Puchheim			Telefon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Bauwe	rke	Projekt-Beze Projekt-Num		henburg o.d.T				rojekt-Variante: uftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.	
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
RUB.4	Zulauf	1.830.831	482.154	85.718	643.320	891.600	640.435	841.172	5.657,96	
Typ RUB	BÜ	898	10	2	80	97	10	80	0,48	
Zeitraum Simulation	KÜ	202.517	4.782	897	20.534	25.506	5.655	21.625	467,42	
	Abfluss	1.627.416	477.362	84.818	622.706	865.998	634.770	819.467	13.342,81	
RUB.4	Zulauf	166.398	43.821	7.791	58.469	81.034	58.207	76.451	514,23	
Typ RUB	ВÜ	82	1	0	7	9	1	7	0,04	
Zeitraum <i>i.M.</i>	KÜ	18.406	435	82	1.866	2.318	514	1.965	42,48	
	Abfluss	147.910	43.386	7.709	56.596	78.707	57.692	74.478	1.212,68	
RUB.Leuzenbronn	Zulauf	317.598	49.291	8.780	70.740	97.004	82.664	112.457	4.699,04	
Typ RUB	ВÜ	139	2	0	12	15	2	12	0,25	
Zeitraum Simulation	KÜ	33.856	481	94	3.089	3.771	559	3.187	275,96	
	Abfluss	283.602	48.808	8.686	67.639	93.218	82.103	109.257	13.655,33	
RUB.Leuzenbronn	Zulauf	28.865	4.480	798	6.429	8.816	7.513	10.221	427,08	
Typ RUB	BÜ	13	0	0	1	1	0	1	0,02	
Zeitraum <i>i.M.</i>	KÜ	3.077	44	9	281	343	51	290	25,08	
	Abfluss	25.776	4.436	789	6.147	8.472	7.462	9.930	1.241,08	
OMA.Leuzenbronn	Zulauf	33.996	483	94	3.101	3.786	561	3.199	275,96	
Тур ОМА	ВÜ	119	1	0	11	13	1	11	0,15	
Zeitraum Simulation	KÜ	4.365	55	11	391	476	59	397	15,17	
	Abfluss	29.511	85	33	270	659	100	279	443,77	

b-a-u ing.ges.mbH		Lindberghstr.	5		82178	3 Puchheim			Telefon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Bauwerke		Projekt-Beze Projekt-Numr	_	nenburg o.d.T				ojekt-Variante uftraggeber:	Prognosezustand Stadt Rothenburg o.d.T.	
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
OMA.Leuzenbronn	Zulauf	3.090	44	9	282	344	51	291	25,08	
Тур ОМА	ВÜ	11	0	0	1	1	0	1	0,01	
Zeitraum i.M.	KÜ	397	5	1	36	43	5	36	1,38	
	Abfluss	2.682	8	3	25	60	9	25	40,33	
RUB.3	Zulauf	3.237.632	609.041	108.401	850.179	1.170.459	768.270	1.049.215	5.864,67	
Typ RUB	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	KÜ	451.662	7.311	1.408	42.162	51.672	7.957	42.969	487,23	
	Abfluss	2.785.971	601.730	106.993	808.018	1.118.787	760.313	1.006.246	14.086,19	
RUB.3	Zulauf	294.257	55.354	9.852	77.270	106.379	69.825	95.359	533,02	
Typ RUB	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	KÜ	41.050	664	128	3.832	4.696	723	3.905	44,28	
	Abfluss	253.207	54.689	9.724	73.438	101.683	69.102	91.454	1.280,24	
RUB.2	Zulauf	1.812.046	387.306	68.886	525.854	631.623	483.724	646.377	5.576,40	
Typ RUB	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	KÜ	197.667	3.488	667	18.752	22.709	3.831	19.181	431,65	
	Abfluss	1.614.378	383.818	68.219	507.102	608.914	479.893	627.196	13.439,75	
RUB.2	Zulauf	164.690	35.201	6.261	47.793	57.406	43.964	58.747	506,82	
Typ RUB	ВÜ	0	0	0	0	0	0	0	0,00	
Zeitraum i.M.	KÜ	17.965	317	61	1.704	2.064	348	1.743	39,23	
	Abfluss	146.725	34.884	6.200	46.089	55.342	43.616	57.004	1.221,49	

b-a-u ing.ges.	s.mbH		Lindberghstr	·. 5		82178	3 Puchheim			Telefon: 089-215	5533-100	Fax: 089-21553310
Ergebnisse Frachten E	Bauwerke		Projekt-Beze Projekt-Num	0	henburg o.d.1	Г			rojekt-Variante uftraggeber:	: Prognosezustan Stadt Rothenbur		
			Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]		
RUB.1		Zulauf	21.947.524	4.974.576	884.411	6.645.520	9.025.870	6.574.854	8.645.868	22.572,73		
Typ RU	JB	ВÜ	0	0	0	0	0	0	0	0,00		
Zeitraum Sim	mulation	KÜ	158	5	1	17	21	6	18	1,60		
		Abfluss	21.947.366	4.974.571	884.411	6.645.503	9.025.848	6.574.848	8.645.849	24.793,98		
RUB.1		Zulauf	1.994.733	452.122	80.381	603.988	820.329	597.565	785.792	2.051,56		
Typ RU	JB	ВÜ	0	0	0	0	0	0	0	0,00		
Zeitraum <i>i.M</i> .	1.	KÜ	14	0	0	2	2	1	2	0,15		
		Abfluss	1.994.718	452.121	80.381	603.986	820.327	597.565	785.791	2.253,44		

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puchl	neim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt- Auftragg		ognosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST.Bettenfeld	Einleitungen	92.201	435	127	2.315	3.639	476	2.347	1.093,04	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	6.941.366	34.707	2.082	104.120	0	34.707	104.120	0,00	
	Abfluss	7.033.566	35.142	2.209	106.435	3.639	35.182	106.467	1.093,04	
EST.Bettenfeld	Einleitungen	8.380	40	12	210	331	43	213	99,34	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	630.876	3.154	189	9.463	0	3.154	9.463	0,00	
	Abfluss	639.256	3.194	201	9.674	331	3.198	9.676	99,34	
EST.Gebsattel	Einleitungen	410.281	8.535	1.613	40.052	49.530	10.735	42.802	821,12	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	109.326.507	546.633	32.798	1.639.898	0	546.633	1.639.898	0,00	
	Abfluss	109.736.787	555.167	34.411	1.679.950	49.530	557.367	1.682.700	821,12	
EST.Gebsattel	Einleitungen	37.289	776	147	3.640	4.502	976	3.890	74,63	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	9.936.299	49.681	2.981	149.044	0	49.681	149.044	0,00	
	Abfluss	9.973.587	50.457	3.127	152.685	4.502	50.657	152.935	74,63	
EST.Kaiserweg	Einleitungen	276.579	2.775	735	2.801	31.549	3.224	2.913	579,69	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	694.137	3.471	208	10.412	0	3.471	10.412	0,00	
	Abfluss	970.716	6.246	943	13.213	31.549	6.694	13.325	579,69	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puch	heim		Tel	efon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt-' Auftragg		ognosezustand ldt Rothenburg o.d.T.	
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
EST.Kaiserweg	Einleitungen	25.137	252	67	255	2.867	293	265	52,69	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	63.088	315	19	946	0	315	946	0,00	
	Abfluss	88.225	568	86	1.201	2.867	608	1.211	52,69	
EST.Wachsenberg	Einleitungen	99.327	1.399	273	9.054	10.970	1.584	9.286	749,35	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	1.388.273	6.941	416	20.824	0	6.941	20.824	0,00	
	Abfluss	1.487.600	8.340	689	29.878	10.970	8.526	30.110	749,35	
EST.Wachsenberg	Einleitungen	9.027	127	25	823	997	144	844	68,11	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	126.175	631	38	1.893	0	631	1.893	0,00	
	Abfluss	135.203	758	63	2.716	997	775	2.737	68,11	
EST.Neusitz	Einleitungen	898.121	13.290	2.579	82.651	100.129	15.276	85.134	1.084,65	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	1.388.273	0	0	0	0	0	0	0,00	
	Abfluss	2.286.394	20.231	2.996	103.475	100.129	22.218	105.958	1.084,65	
EST.Neusitz	Einleitungen	81.627	1.208	234	7.512	9.100	1.388	7.737	98,58	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	126.175	0	0	0	0	0	0	0,00	
	Abfluss	207.802	1.839	272	9.404	9.100	2.019	9.630	98,58	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puch	heim		Tel	efon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	ırg o.d.T			Projekt- Auftragę		ognosezustand ldt Rothenburg o.d.T.	
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
EST.6.3 (RÜ VIII)	Einleitungen	1.177.579	16.180	3.326	85.954	131.988	18.616	88.549	1.137,02	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	3.054.201	15.271	916	45.813	0	15.271	45.813	0,00	
	Abfluss	4.231.780	38.311	4.654	152.344	131.988	40.746	154.940	1.137,02	
EST.6.3 (RÜ VIII)	Einleitungen	107.026	1.471	302	7.812	11.996	1.692	8.048	103,34	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	277.585	1.388	83	4.164	0	1.388	4.164	0,00	
	Abfluss	384.612	3.482	423	13.846	11.996	3.703	14.082	103,34	
<u>EST.6</u>	Einleitungen	635.255	10.989	2.105	59.954	73.587	12.059	61.290	498,56	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	4.442.474	22.212	1.333	66.637	0	22.212	66.637	0,00	
	Abfluss	5.077.729	33.202	3.437	126.591	73.587	34.271	127.928	498,56	
<u>EST.6</u>	Einleitungen	57.736	999	191	5.449	6.688	1.096	5.570	45,31	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	403.761	2.019	121	6.056	0	2.019	6.056	0,00	
	Abfluss	461.497	3.018	312	11.505	6.688	3.115	11.627	45,31	
<u> </u>	Einleitungen	2.968.780	47.994	9.427	250.829	335.481	55.474	259.712	1.900,88	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	114.185.462	570.927	34.256	1.712.782	0	570.927	1.712.782	0,00	
	Abfluss	126.733.327	673.621	46.964	2.127.710	335.481	681.101	2.136.593	25.963,69	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puch	heim		Tel	efon: 089-215533-100	Fax: 089-21553310
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	rg o.d.T			Projekt- Auftrago		ognosezustand dt Rothenburg o.d.T.	
		Q	BSB5	NH4-N	AFS	CSB	BSB5_M3	AFS_M3	Dauer RW	
		[cbm]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[h]	
EST. <u>5</u>	Einleitungen	269.822	4.362	857	22.797	30.491	5.042	23.604	172,76	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	MNQ	10.377.912	51.890	3.113	155.669	0	51.890	155.669	0,00	
	Abfluss	11.518.343	61.223	4.268	193.380	30.491	61.903	194.187	2.359,75	
EST.Leuzenbronn	Einleitungen	33.996	141	44	672	1.148	161	687	443,60	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	694.137	3.471	208	10.412	0	3.471	10.412	0,00	
	Abfluss	728.132	3.612	252	11.084	1.148	3.631	11.099	443,60	
EST.Leuzenbronn	Einleitungen	3.090	13	4	61	104	15	62	40,32	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	MNQ	63.088	315	19	946	0	315	946	0,00	
	Abfluss	66.177	328	23	1.007	104	330	1.009	40,32	
<u>EST.4</u>	Einleitungen	12.785.275	107.628	13.652	436.214	362.232	116.000	446.203	25.963,69	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	115.400.201	577.001	34.620	1.731.003	0	577.001	1.731.003	0,00	
	Abfluss	128.185.477	684.629	48.272	2.167.217	362.232	693.001	2.177.206	25.963,69	
<u>EST.4</u>	Einleitungen	1.162.008	9.782	1.241	39.646	32.922	10.543	40.554	2.359,75	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M</i> .	MNQ	10.488.315	52.442	3.146	157.325	0	52.442	157.325	0,00	
	Abfluss	11.650.323	62.223	4.387	196.971	32.922	62.984	197.879	2.359,75	

b-a-u ing.ges.mbH		Lindberghstr. 5			82178 Puc	hheim		Tel	efon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Rother Projekt-Nummer: 2		urg o.d.T	Projekt-Variante: Prognosezustand Auftraggeber: Stadt Rothenburg o.d.T.					
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
EST.3	Einleitungen	13.236.937	114.938	15.060	478.375	413.905	123.957	489.172	25.963,69	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	116.007.571	580.038	34.802	1.740.114	0	580.038	1.740.114	0,00	
	Abfluss	129.244.508	694.976	49.862	2.218.489	413.905	703.995	2.229.286	25.963,69	
<u>EST.3</u>	Einleitungen	1.203.058	10.446	1.369	43.478	37.618	11.266	44.459	2.359,75	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	10.543.517	52.718	3.163	158.153	0	52.718	158.153	0,00	
	Abfluss	11.746.575	63.164	4.532	201.631	37.618	63.984	202.612	2.359,75	
EST.2	Einleitungen	13.434.604	118.426	15.727	497.127	436.614	127.788	508.353	25.963,69	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>Simulation</i>	MNQ	116.614.940	583.075	34.984	1.749.224	0	583.075	1.749.224	0,00	
	Abfluss	130.049.545	701.501	50.712	2.246.351	436.614	710.863	2.257.577	25.963,69	
EST.2	Einleitungen	1.221.024	10.763	1.429	45.182	39.682	11.614	46.202	2.359,75	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum <i>i.M.</i>	MNQ	10.598.718	52.994	3.180	158.981	0	52.994	158.981	0,00	
	Abfluss	11.819.742	63.757	4.609	204.163	39.682	64.608	205.183	2.359,75	
<u>EST.1</u>	Einleitungen	35.382.128	228.168	125.465	716.618	1.424.266	237.531	727.845	25.963,69	
	Überlauf	0	0	0	0	0	0	0	0,00	
Zeitraum Simulation	MNQ	118.437.049	592.185	35.531	1.776.556	0	592.185	1.776.556	0,00	
	Abfluss	153.819.177	820.353	160.996	2.493.174	1.424.266	829.716	2.504.401	25.963,69	

b-a-u ing.ges.mbH		Lindberghstr. 5	dberghstr. 5			82178 Puchheim			efon: 089-215533-100	Fax: 089-215533109
Ergebnisse Frachten Gewässer		Projekt-Bezeichnung: Projekt-Nummer:	Rothenbu	urg o.d.T	Projekt-Variante: Prognosezustand Auftraggeber: Stadt Rothenburg o.		ognosezustand odt Rothenburg o.d.T.			
		Q [cbm]	BSB5 [kg]	NH4-N [kg]	AFS [kg]	CSB [kg]	BSB5_M3 [kg]	AFS_M3 [kg]	Dauer RW [h]	
<u>EST.1</u>	Einleitungen Überlauf	3.215.756 0	20.737 0	11.403 0	65.131 0	129.447 0	21.588 0	66.151 0	2.359,75 0,00	
Zeitraum <i>i.M</i> .	MNQ Abfluss		53.822 74.559	3.229 14.632	161.465 226.596	0 129.447	53.822 75.410	161.465 227.616	0,00 2.359,75	

ANLAGE 4 HYDRAULISCHE NACHWEISE NACH DWA-A 166

Proj.-Nr.: **295809**, Bericht-Nr. 01

0 l/s

 $SQ_{Dr,o,vorh}$

Nachweise Lastfall "Prognose-Zustand"

Gemeinde Neusitz Regenüberlaufbecken RÜB - FB H

Gem	näß Merkblatt 4.4/22 vom März 2018 des LfU	✓	Normalanforderungen weitergehende Anforderunge		
1	Bemessungsgrunddaten				
1.1	Direkteinzugsgebiet				
	Undurchlässige Fläche		$A_{E,b}$	=	4,95 ha
	Trockenwetterabfluss - Jahresmittel		$Q_{T,aM}$	=	0,27 l/s
	Trockenwetterabfluss - Tagesspitze		$Q_{T,h,max}$	=	0,51 l/s
	Regenabfluss aus Trenngebieten		$Q_{R,Tr}$	=	0 l/s
1.2	Gesamteinzugsgebiet				
	Undurchlässige Gesamtfläche		$A_{E,b}$	=	4,95 ha
	Trockenwetterabfluss - Jahresmittel		$Q_{T,aM}$	=	0,27 l/s
	Trockenwetterabfluss - Tagesspitze		$Q_{T,h,max}$	=	0,51 l/s
	Fließzeit		t_{f}	=	5 min

Oberhalb liegende vorhandene Drosselabflüsse

1.3 Bemessungsabflüsse

	Kritische Regenspende		r_{krit}	=	30 l/s/ha
	Kritischer Regenabfluss	$Q_{r,krit} = A_{E,b} \cdot r_{krit}$	$Q_{r,krit}$	=	149 l/s
	Kritischer Mischwasserabfluss	$Q_{krit} = Q_{r,krit} + Q_{T,aM} \cdot SQ_{Dr,o}$	Q_{krit}	=	149 l/s
	Drosselabfluss		Q_{Dr}	=	2,5 l/s
	Regenspende 15;1		r _{15,1}	=	123 l/s/ha
	Zufluss bei Berechnungsregen	der Jährlichkeit 1	$Q_{0(n=1)}$	=	611 l/s
	Abfluss am Beckenüberlauf	$Q_{B\ddot{U}} = Q_0 - Q_{Dr}$	$Q_{B\ddot{U}(n=1)}$	=	608 l/s
	Regenspende 10;0,5		r _{10,0,5}	= :	200 l/s/ha
	Zufluss bei Berechnungsregen	der Jährlichkeit 0,5	$Q_{0(n=0,5)}$	=	990 l/s
	Abfluss am Beckenüberlauf	$Q_{B\ddot{U}} = Q_0 - Q_{Dr}$	$Q_{B\ddot{U}(n=0,5)}$	= !	988 l/s
	Maximal möglicher Zufluss:				
	- als Zufluss bei Berechnungsr	egen der Jährlichkeit 0,1	r _{10;0,1}	= :	297 l/s/ha
	Maximal möglicher Zufluss aus	s EZG, Jährlichkeit 0,1	$Q_{0(n=0,1)}$	= 1.	469 l/s
	Abfluss am Beckenüberlauf	$Q_{B\ddot{U}} = Q_0 - Q_{Dr}$	$Q_{B\ddot{U}(n=0,1)}$	= 1.	466 l/s
	- als maximaler Zufluss - aus Ve	ereNa Berechnung (Fa. b-a-u-ingenieure)	Q_{max}	=	800 l/s
	Abfluss am Beckenüberlauf	$Q_{B\ddot{U}} = Q_{max} - Q_{Dr}$	$Q_{S\ddot{\text{U}}(n=0,1)}$	=	798 l/s
1.4	Hochwasserspiegel				_
	Wasserspiegel bei 1-jährlicher	n Hochwasser HQ₁	HW_1	= n.b.	m ü. NN
	Wasserspiegel bei 10-jährliche	em Bemessungshochwasser HQ ₁₀	HW_{10}	= n.b.	m ü. NN
1.5	Hochwasserabfluss				
	Hochwasserabfluss bei 1-jährli	ichem Hochwasser HQ₁	HQ_1	= n.b.	l/s
	Hochwasserabfluss bei 10-jäh	rlichem BemHochwasser HQ ₁₀	HQ ₁₀	= n.b.	l/s
	Hochwasserabfluss bei 20-jäh	rlichem BemHochwasser HQ ₂₀	HQ_{20}	= n.b.	l/s
	•	hrlichem BemHochwasser HQ ₁₀₀	HQ ₁₀₀	= n.b.	l/s
	•	100			

2 Bauwerksdaten

2.1 Zulaufkanal

S32			
Durchmesser	DN	=	500 mm
Länge	L_{Zu}	=	6,8 m
Sohle oben	S _o	=	454,42 m ü. NN
Sohle unten	S_{u}	=	454,22 m ü. NN
Gefälle	$I_{S,Zu}$	=	30,0 ‰
betriebliche Rauhigkeit	kb	=	1,50 mm
S33			
Durchmesser	DN	=	500 mm
Länge	L_{Zu}	=	64,5 m
Sohle oben	S _o	=	454,22 m ü. NN
Sohle unten	S_{u}	=	451,02 m ü. NN
Gefälle	$I_{S,Zu}$	=	49,6 ‰
betriebliche Rauhigkeit	kb	=	1,50 mm

2.3 Beckenüberlauf

OK Schwelle	e Beckenüberlauf	OK _{BÜ} =	=	450,82 m ü. NN
OK Betonso	hwelle	OK _{BÜ} =	=	450,82 m ü. NN
Länge	1-seitige Schwelle	L _{BÜ} =	=	2,50 m

2.4 Tauchwand Beckenüberlauf

Horizontaler Abstand der Tauchwand von der Schwelle	$a_{h,TW}$	=	0,20 m
Unterkante Kulissentauchwand (Entlastungsbeginn)	UK_TW	=	450,62 m ü. NN
Sohle unter Tauchwand	S_{TW}	=	449,62 m ü. NN
Eintauchtiefe	h_TW	=	0,20 m
Länge	L_TW	=	2,50 m

2.5 Entlastungsrinne/ -kanal

Entlastungskanal

Durchmesser	DN	=	500 mm
Länge	L_{Zu}	=	8,00 m
Sohle oben	S _o	=	450,42 m ü. NN
Sohle unten	S_{u}	=	450,26 m ü. NN
Gefälle	$I_{S,Zu}$	=	20,0 ‰
betriebliche Rauhigkeit	kb	=	0,50 mm

2.6 Drossel | Pumpwerk (Waagedrossel

Nenndurchmesser Druck-/Drosselleitung Material	DN	=	250 mm k.A.
Innendurchmesser Druck-/Drosselleitung	Du _{innen}	=	k.A. mm
Länge	L	=	k.A. m
Sohle Drosselschacht oben Pumpwerk (Ansaugpunkt)	S _o	=	448,19 m ü. NN
Sohle Drosselschacht unten	S_u	=	K.A. m ü. NN
betriebliche Rauhigkeit	kb	=	0,25 mm

617 l/s

3 Nachweise

3.1 Zulaufkanal

Lastfall Trockenwetterabfluss Q_{Th max}

S32

Schleppspannung bei $Q_{T,h,max}$ $Tau_{Qt,h,max}$ = 4,38 N/m² Mind.-Schubspannung Tau_{min} = 1,0 N/m² Schleppspannung \geq 1,0 N/mm² --> Nachweis erbracht

S33

Schleppspannung bei $Q_{T,h,max}$ $Tau_{Qt,h,max} = 2,65 \text{ N/m}^2$ Mind.-Schubspannung $Tau_{min} = 1,0 \text{ N/m}^2$

Schleppspannung ≥ 1,0 N/mm² --> Nachweis erbracht

- => regelmäßiges Spülvorgänge bei Trockenwetter erforderlich
- => Vergleichmäßigung im Verbundbauwerk
- => keine Ablagerungen durch ausreichendes Gefälle im MW27 und vorheriger Haltung

3.2 Entlastungsgerinne/-kanal

Lastfall maximaler Abfluss Q_0,max

Maximal möglicher Zufluss aus EZG, Jährlichkeit 0,1 $Q_{0(n=1)} = 608 \text{ l/s}$ max Abfluss Entlastungskanal $Q_{B\ddot{U}} = Q_0 - Q_{Dr} \qquad Q_{B\ddot{U}(n=0,1)} = 606 \text{ l/s}$

Abfluss bei Vollfüllung Entlastungskanal (DN500) Q_{v,EK} Abfluss bei Vollfüllung größer als max. Abfluss --> Nachweis erbracht

Berechnung Kanal unter Druckabfluss

608 I/s

 $Q_{B\ddot{U}(n=1)}$ =

3.3 Beckenüberlauf

Lastfall Berechnung	gsabfluss Q _{0(n=1)}

Abfluss am Beckenüberlauf r _{15,1}	$Q_{B\ddot{U}(n=1)}$	=	608 l/s
Länge der Schwelle	L	=	2,5 m
Spezifische Schwellenbelastung	$q_{R\ddot{U}}$	=	243 l/s/m
Zul. spezifische Schwellenbelastung	zul q _{RÜ}	=	700 l/s/m
geringe Schwellenbelastung> Nachweis erbracht			

3.4 Tauchwand Beckenüberlauf

Abfluss am Beckenüberlauf r_{15,1}

Lastfall Abfluss Beckenüberlauf bei 1-jährlichem Berechnungsregen

Länge der Schwelle Überfallabminderungsbeiwert Überfallformbeiwert Überfallhöhe	L c µ h _{BÜ}	= = = =	2,5 m 1,0 0,45 0,32 m
Horizontaler Abstand der Tauchwand von der Schwelle Horizontaler Mindestabstand Horizontaler Mindestabstand ≥ 2 x h _{ü,BÜ} Horizontaler Abstand nicht ausreichend> Nachweis nicht erbrach> Abbruch der bestehenden Tauschwand	a _{h,TW} a _{h,min} 2 x h _{ü,BÜ} t	= = =	0,20 m 0,30 m 0,64 m
Eintauchtiefe der Tauchwand Mindesteintauchtiefe ≥ h _{ü,BÜ} Maximale Eintauchtiefe ≤ 2 x h _{ü,BÜ} Eintauchtiefe außerhalb des empfohlenen Bereichs> Nachweis n	t _{TW} t _{TW,min} t _{TW,max} icht erbracht	= =	0,74 m 0,32 m 0,64 m
Mindestabstand Sohle bis Unterkante Tauchwand Mindestabstand Sohle bis Unterkante Tauchwand ≥ 2 x h_ü,BÜ Ausreichender Abstand Sohle bis Unterkante Tauchwand> Nach	a _{So,TW} a _{So,TW,min} weis erbracht	=	384,42 m 0,64 m

3.5 Oberflächenbeschickung

Beckenoberfläche kritische Mischwasserabfluss Oberflächenbeschickung Oberflächenbeschickung überschritten> Nachweis nicht erbracht	A Qkrit qA	= = =	45,74 m² 149 l/s 11,7091
Beckenoberfläche kritische Mischwasserabfluss Oberflächenbeschickung Oberflächenbeschickung qa kleiner 10 m/h> Nachweis erbracht	A	=	45,74 m²
	Qkrit	=	74 l/s
	qA	=	5,8439

3.5 spez. Zulaufleistung bei Eintritt in die Sedimentationskammer

Breite Zulaufkammer	bZulauf	=	0,6 m
Tiefe Zulaufkammer	tZulauf	=	1,2 m

Querschnitt Zulaufkammer	Azulauf	=	0,72 m ²
spez. Zulaufleistung	Pspez	=	0,05774
Zufluss in die Sedimentationskammer beim kritischen Regenereignis Zuflussgeschwindigkeit Nuzuvolumen der Sedimentationskammer Sepz. Zuflussleistung kleiner als 0,08> Nachweis erbracht	Qzu vzu VN	= = =	0,14877 m³/s 0,20663 m/s 55 m³
spez. Zulaufleistung	Pspez	=	0,00718
Zufluss in die Sedimentationskammer beim kritischen Regenereignis Zuflussgeschwindigkeit Nuzuvolumen der Sedimentationskammer Sepz. Zuflussleistung kleiner als 0,08> Nachweis erbracht	Qzu vzu VN	= = =	-,

3.6 Drosselorgan

Lastfall Drosselabfluss QDr

Drosselabfluss des Drosselorgans kleiner als der Mindestabfluss für Drosselorgane --> Nachweis nicht erbracht

^{--&}gt; ggf. wird Spüleinrichtung nachgerüstet, wenn betriebsprobleme auftauchen sollten

ANLAGE 5 KOSTRA-DATEN

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagshöhen nach **KOSTRA-DWD 2020**

INDEX_RC Rasterfeld : Spalte 147, Zeile 176 : 176147

Ortsname : Wachsenberg

Bemerkung

Dauerstufe D	Niederschlagshöhen hN [mm] je Wiederkehrintervall T [a]								
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	7,8	9,5	10,6	12,1	14,1	16,3	17,7	19,5	22,1
10 min	9,8	12,0	13,4	15,2	17,8	20,5	22,3	24,6	27,9
15 min	11,1	13,6	15,1	17,2	20,1	23,1	25,1	27,7	31,4
20 min	12,0	14,7	16,4	18,6	21,8	25,1	27,2	30,0	34,1
30 min	13,4	16,4	18,3	20,8	24,3	28,0	30,4	33,5	38,0
45 min	14,9	18,3	20,4	23,1	27,0	31,1	33,8	37,3	42,3
60 min	16,0	19,7	21,9	24,9	29,1	33,5	36,4	40,1	45,5
90 min	17,8	21,8	24,3	27,5	32,2	37,1	40,3	44,5	50,4
2 h	19,1	23,4	26,1	29,6	34,6	39,9	43,3	47,8	54,2
3 h	21,1	25,9	28,8	32,7	38,3	44,1	47,8	52,8	59,9
4 h	22,6	27,7	30,9	35,1	41,1	47,3	51,3	56,6	64,3
6 h	25,0	30,6	34,1	38,7	45,4	52,2	56,7	62,5	70,9
9 h	27,6	33,8	37,7	42,8	50,1	57,6	62,6	69,0	78,3
12 h	29,6	36,3	40,4	45,9	53,7	61,8	67,1	74,0	84,0
18 h	32,6	40,0	44,6	50,6	59,3	68,2	74,0	81,7	92,7
24 h	35,0	42,9	47,8	54,3	63,6	73,1	79,4	87,6	99,4
48 h	41,4	50,8	56,6	64,2	75,2	86,5	93,9	103,6	117,6
72 h	45,7	56,0	62,4	70,8	82,9	95,4	103,6	114,3	129,7
4 d	49,0	60,1	66,9	75,9	88,9	102,3	111,1	122,6	139,0
5 d	51,7	63,4	70,6	80,1	93,9	108,0	117,3	129,4	146,8
6 d	54,0	66,2	73,8	83,8	98,1	112,9	122,5	135,2	153,4
7 d	56,1	68,8	76,6	86,9	101,8	117,2	127,2	140,4	159,2

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

hΝ Niederschlagshöhe in [mm]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2020**

INDEX_RC Rasterfeld : Spalte 147, Zeile 176 : 176147

Ortsname : Wachsenberg

Bemerkung

Dauerstufe D	e D Niederschlagspenden rN [l/(s·ha)] je Wiederkehrintervall T [a]								
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	260,0	316,7	353,3	403,3	470,0	543,3	590,0	650,0	736,7
10 min	163,3	200,0	223,3	253,3	296,7	341,7	371,7	410,0	465,0
15 min	123,3	151,1	167,8	191,1	223,3	256,7	278,9	307,8	348,9
20 min	100,0	122,5	136,7	155,0	181,7	209,2	226,7	250,0	284,2
30 min	74,4	91,1	101,7	115,6	135,0	155,6	168,9	186,1	211,1
45 min	55,2	67,8	75,6	85,6	100,0	115,2	125,2	138,1	156,7
60 min	44,4	54,7	60,8	69,2	80,8	93,1	101,1	111,4	126,4
90 min	33,0	40,4	45,0	50,9	59,6	68,7	74,6	82,4	93,3
2 h	26,5	32,5	36,3	41,1	48,1	55,4	60,1	66,4	75,3
3 h	19,5	24,0	26,7	30,3	35,5	40,8	44,3	48,9	55,5
4 h	15,7	19,2	21,5	24,4	28,5	32,8	35,6	39,3	44,7
6 h	11,6	14,2	15,8	17,9	21,0	24,2	26,3	28,9	32,8
9 h	8,5	10,4	11,6	13,2	15,5	17,8	19,3	21,3	24,2
12 h	6,9	8,4	9,4	10,6	12,4	14,3	15,5	17,1	19,4
18 h	5,0	6,2	6,9	7,8	9,2	10,5	11,4	12,6	14,3
24 h	4,1	5,0	5,5	6,3	7,4	8,5	9,2	10,1	11,5
48 h	2,4	2,9	3,3	3,7	4,4	5,0	5,4	6,0	6,8
72 h	1,8	2,2	2,4	2,7	3,2	3,7	4,0	4,4	5,0
4 d	1,4	1,7	1,9	2,2	2,6	3,0	3,2	3,5	4,0
5 d	1,2	1,5	1,6	1,9	2,2	2,5	2,7	3,0	3,4
6 d	1,0	1,3	1,4	1,6	1,9	2,2	2,4	2,6	3,0
7 d	0,9	1,1	1,3	1,4	1,7	1,9	2,1	2,3	2,6

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

rΝ Niederschlagsspende in [l/(s·ha)]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Toleranzwerte der Niederschlagshöhen und -spenden nach KOSTRA-DWD 2020

INDEX_RC Rasterfeld : Spalte 147, Zeile 176 : 176147

Ortsname : Wachsenberg

Bemerkung

Dauerstufe D			Tol	eranzwerte UC	je Wiederkehrir	ntervall T [a] in [:	±%1		
Baas.state B							•	50	100
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	14	15	15	16	17	17	18	18	19
10 min	17	19	19	20	21	22	22	23	23
15 min	19	20	21	22	23	24	24	25	25
20 min	20	21	22	23	24	25	25	26	26
30 min	20	22	23	24	25	25	26	26	27
45 min	20	22	22	23	24	25	26	26	27
60 min	19	21	22	23	24	25	25	26	26
90 min	19	20	21	22	23	24	24	25	25
2 h	18	20	20	21	22	23	24	24	25
3 h	17	18	19	20	21	22	22	23	23
4 h	16	18	18	19	20	21	22	22	23
6 h	15	17	17	18	19	20	20	21	21
9 h	14	16	16	17	18	19	19	20	20
12 h	14	15	16	16	17	18	18	19	19
18 h	14	15	15	16	17	17	18	18	18
24 h	14	14	15	15	16	17	17	18	18
48 h	15	15	15	16	16	17	17	17	17
72 h	16	16	16	16	17	17	17	17	18
4 d	17	17	17	17	17	17	17	18	18
5 d	18	18	18	18	18	18	18	18	18
6 d	19	19	18	18	18	18	18	19	19
7 d	20	19	19	19	19	19	19	19	19

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D Dauerstufe in [min, h, d]: definierte Niederschlagsdauer einschließlich Unterbrechungen

UC Toleranzwert der Niederschlagshöhe und -spende in [±%]

ANLAGE 6 ZUSAMMENSTELLUNG DER EINLEITSTELLE

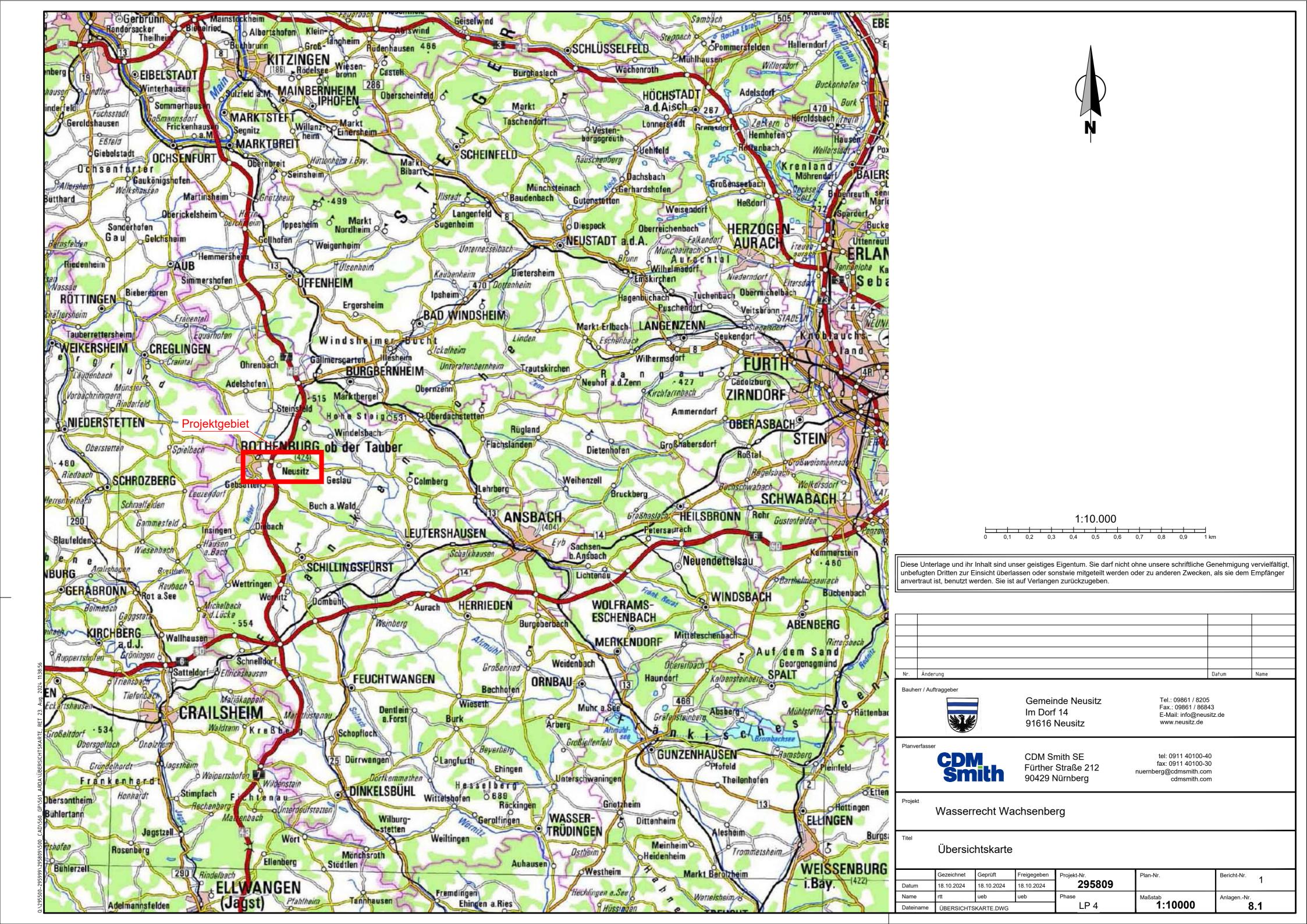
Zusammenstellung der Einleitungen

aus der Kanalisation in die Gewässer von Regenüberlaufbauwerken bei Mischverfahren und Regenwasserauslässen bei Trennverfahren (zu Abschnitt 5.1 der Erläuterung)

Gewässer	Bemerkung	11	Retentionsbooden filter nach RÜB nachgeschalten		Nürnberg, den
	Name Einleitungs- stelle Nieder- schlagsgebi et F _N (km²)	10	Brunnentalgra ben, 0,7km², 1,5l/s		Aufgestellt: 12.12.2024.
Entlastungs- oder Einleitungs- kanal	DN (mm) Gefälle Js QRÜ (l/s) Qvoll (l/s)	6	DN 500 IS=2%, 617 l/s		
	Qkrit (I/S)	8	149 l/s		
nale	Trok- ken- wetter- abfluß (I/s)	7	0,27 l/s		
Konstruktions- und Bemessungsmerkmale des Regenüberlaufbauwerks	Weiterführender Schmutzwasser kanal (Drossel) DN (mm) Gefälle Js Drossellänge (m)	9	DN 250 Drosselung auf 2,5 II/s (s. Nachweis DWA-A 166)		
struktions- und Bemessungsme des Regenüberlaufbauwerks	Schwellen- höhe (m) Schwellen- länge (m)	2	Ablauf über RÜB Schwellen- höhe 450,819 m ü.NN, 2,5 m		
Kons	Zulauf DN (mm) Gefälle Js Qvoll (l/s)	4	DN 500, Js = Qv= 614 l/s,		
Entwässerungsbereich	Ortsteile, Lage, UTM- Koordinaten Fläche des Einzugsgebietes (ha) Zum Abfluß	3	Neusitz, FINr. 794, E: 590037 N: 5470193 A _E = 66,77 ha, A _{red} = 34,23 ha		
	Be- zeich- nung	2	RÜB und RBF Wach senbe rg		
En	Lfd. Nr. der Einlei- tungs- stelle	1	-		

ANLAGE 7 BAUWERKSVERZEICHNIS

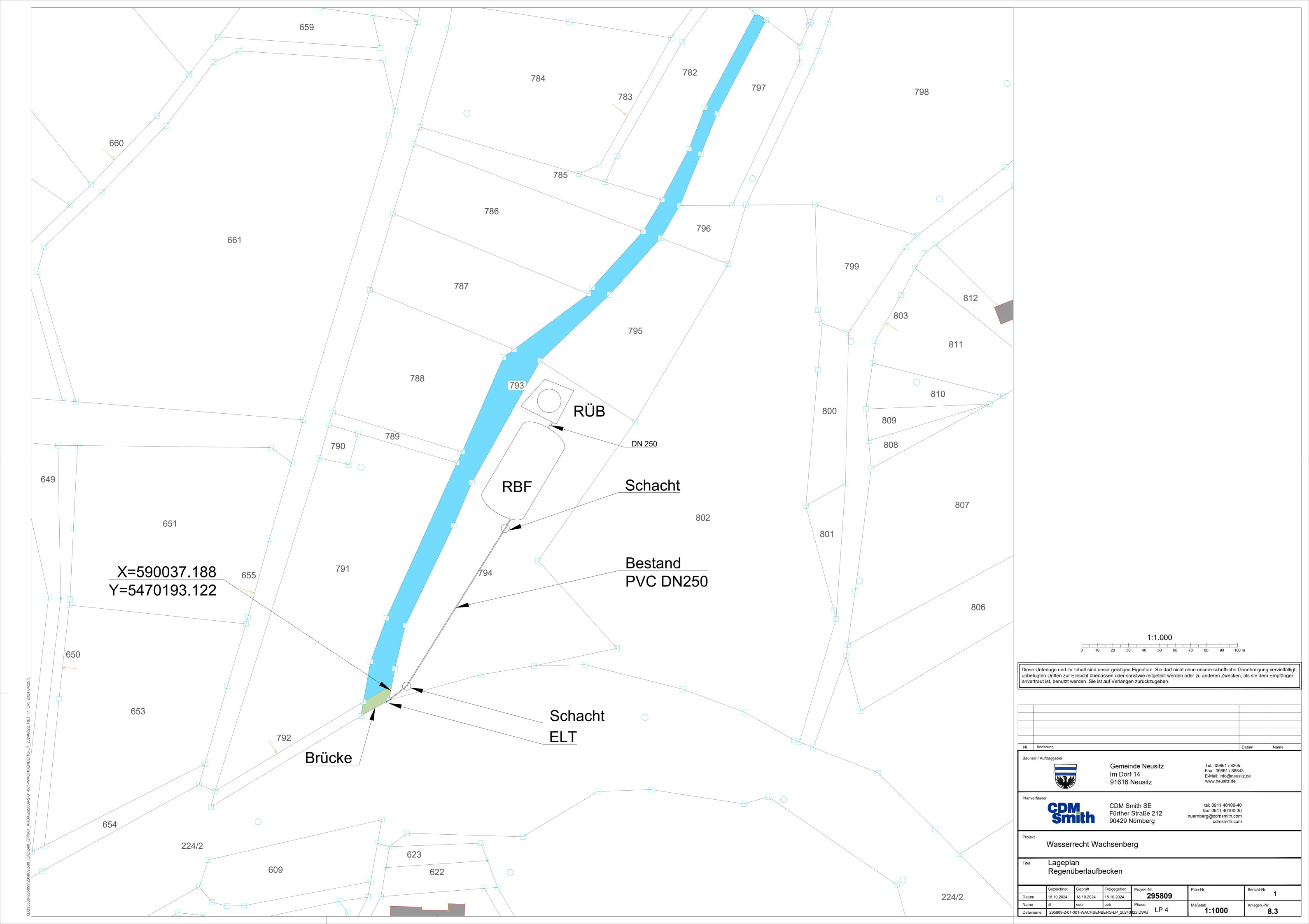
Muster Bauwerksverzeichnis der Gemeinde Neusitz

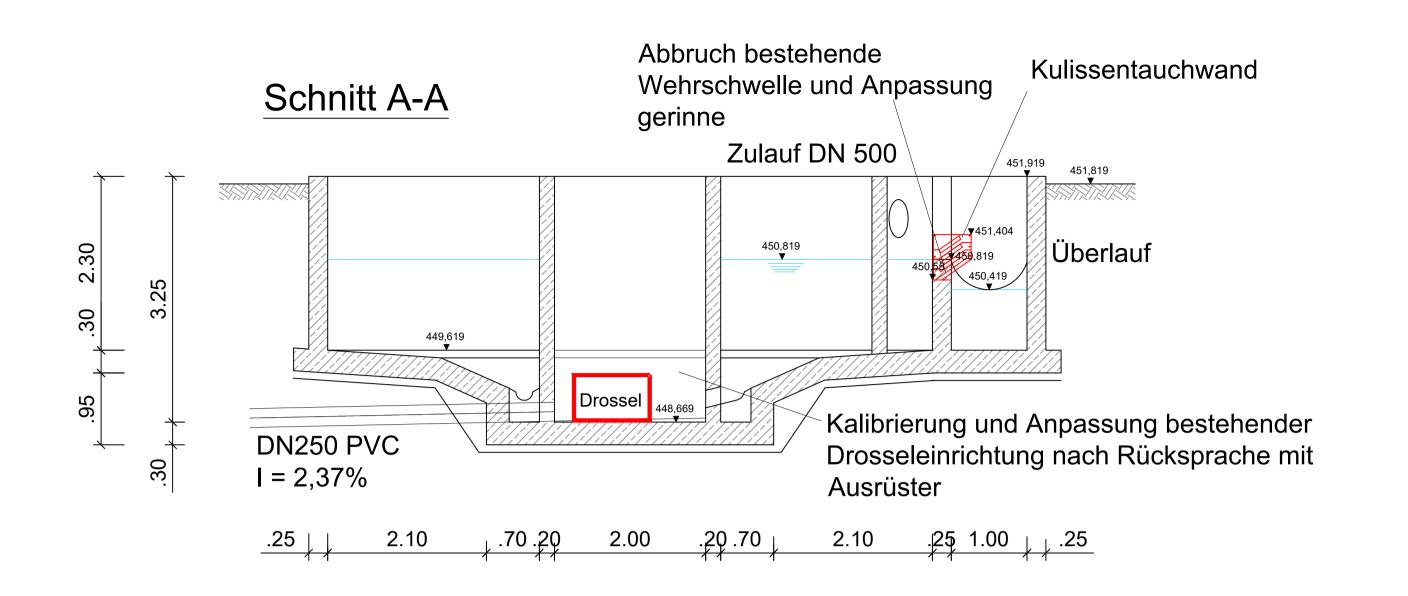

(für Mischwasserbehandlungsanlagen BÜ/RÜ/RÜB etc.)

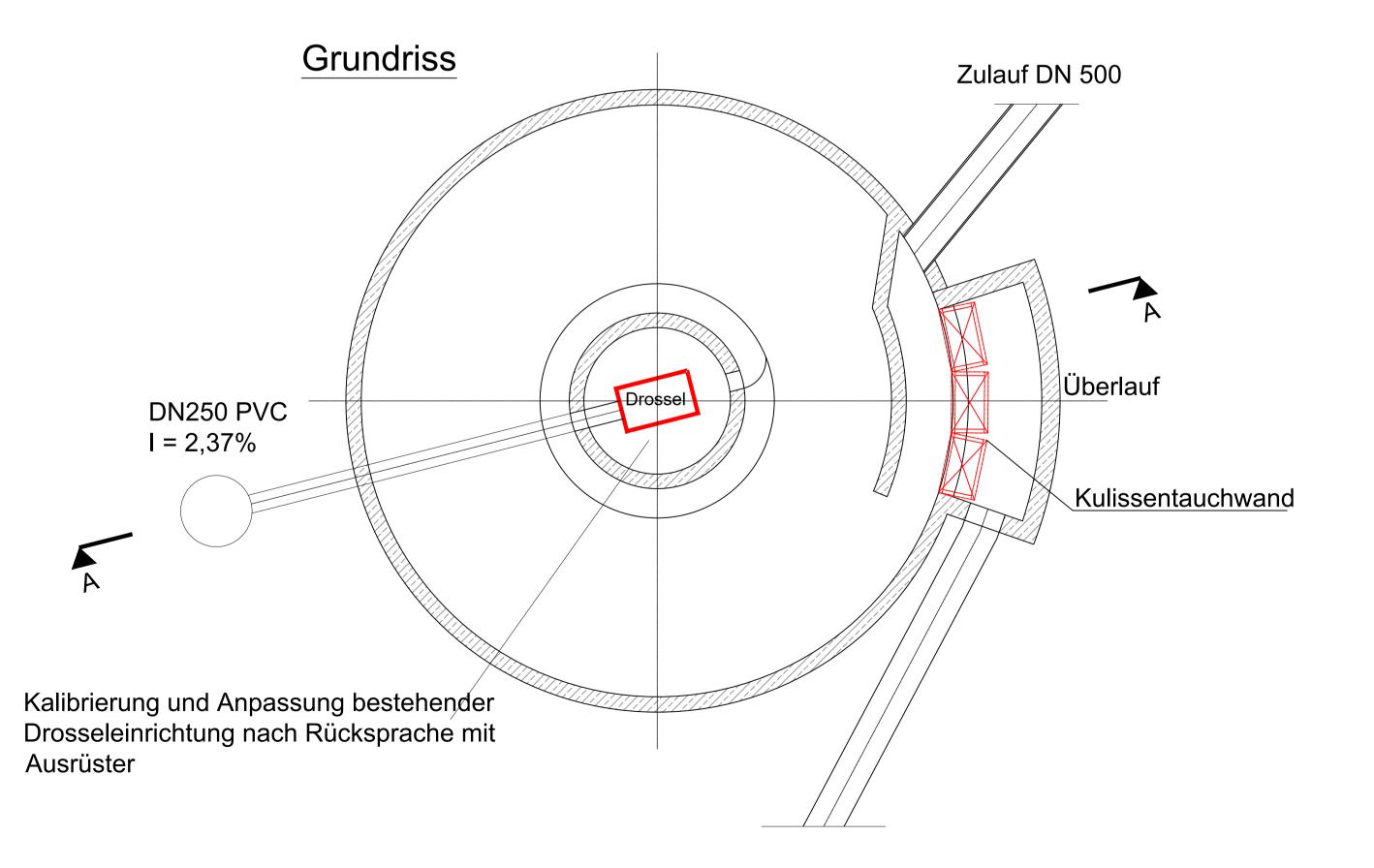
Anlagedaten :

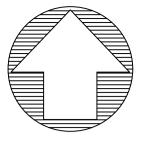
Sonderbauwerke	Mischwasser	RÜB Wachsenberg
Beckenart / RÜ	-	RÜB
undurchlässige Fläche	ha	4,95
Art der Drosseleinrichtung	mm	Waagedrossel
Bemessungsverfahren		A 128
Demessungsveriamen		(weiterer Nachweis über SFB.
vorhandener MW-Zufluss	l/s	-
Drosselabfluss (Q _{Dr})	l/s	2,5
Q-Entlastung (Q _{RÜ})	l/s	608
Zulaufkanal	mm	500
Entlastungkanal BÜ/KÜ	mm	500
Stauraumkanal	Mm	-
Beckenvolumen	m³	55
Schwellenlänge BÜ	m	2,5
Schwellenhöhe BÜ	m ü. NN	450,819
weiterführender Kanal	mm	250
anrechenbares Kanalvolumen	m³	-
Täglicher mittlerer	l/s	0,27
Trockenwetterabfluss Q _{TaM}		
Regenabflussspende _{qr}	l/s*ha	0,45
Kritischer Abfluss (Q _{krit})	l/s	149
Zulässige Entlastungsrat e ₀	%	79,16
Schwimmstoffrückhalt		Kullisentauchwand
Koordinaten UTM 32		32U
(Ost-/Nordwert)		590042,
(Ost-/Notuwert)		5470196

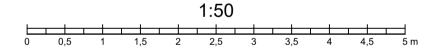
ANLAGE 8 PLANUNTERLAGEN


Anlage 8.1 Übersichtslageplan

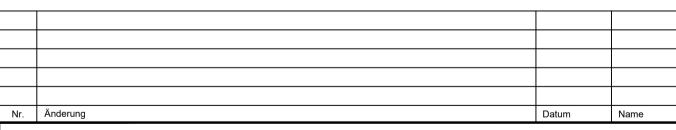

Anlage 8.2 **Berechnungslageplan Bestand**




Anlage 8.3 Lageplan Regenüberlaufbecken



Anlage 8.4 Bauwerksplan
Regenüberlaufbecken



Diese Unterlage und ihr Inhalt sind unser geistiges Eigentum. Sie darf nicht ohne unsere schriftliche Genehmigung vervielfältigt, unbefugten Dritten zur Einsicht überlassen oder sonstwie mitgeteilt werden oder zu anderen Zwecken, als sie dem Empfänger anvertraut ist, benutzt werden. Sie ist auf Verlangen zurückzugeben.

Bauherr / Auftraggeber

Gemeinde Neusitz Im Dorf 14 91616 Neusitz

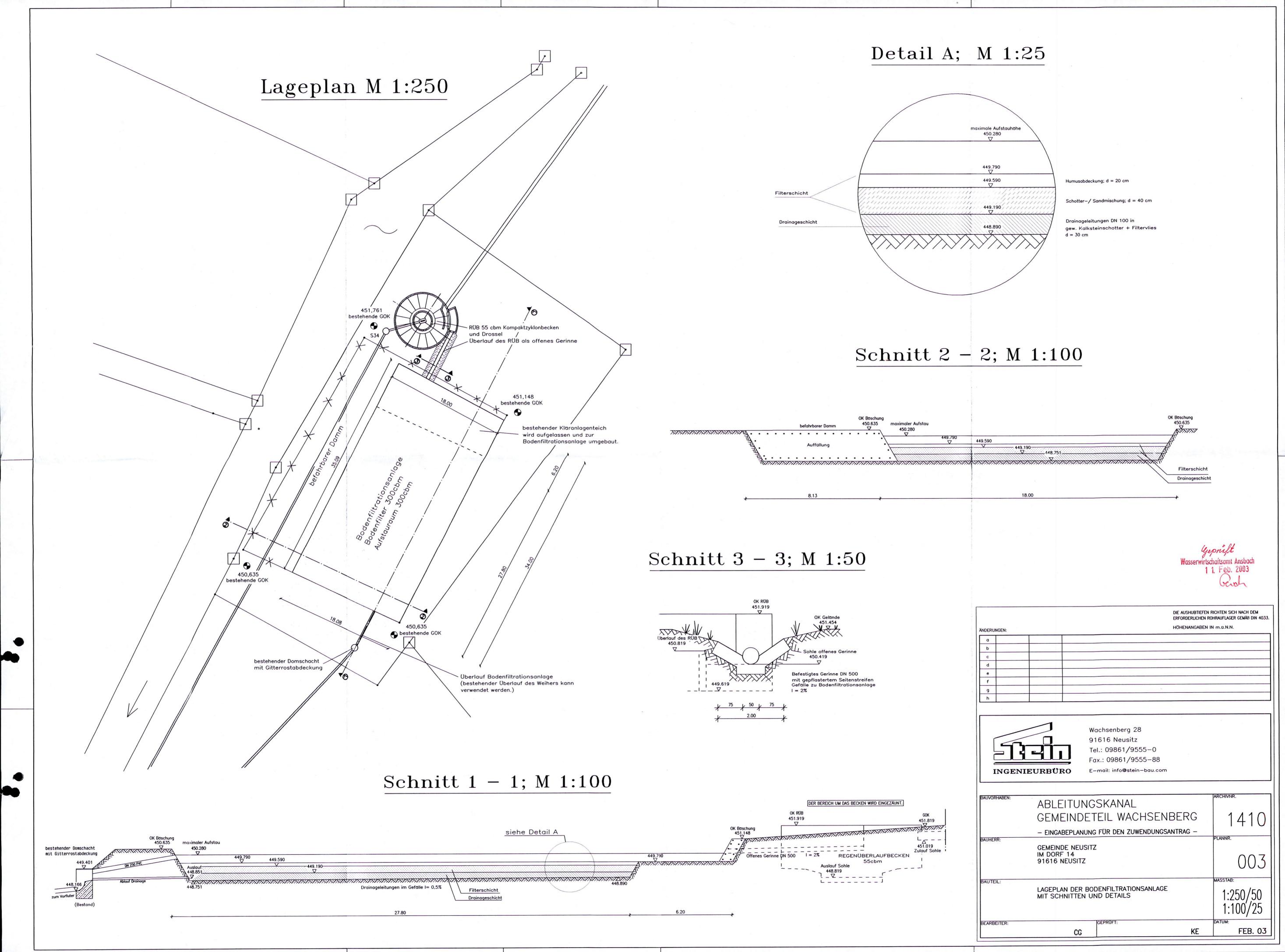
Tel.: 09861 / 8205 Fax.: 09861 / 86843 E-Mail: info@neusitz.de www.neusitz.de

CDM Smith SE Fürther Straße 212 90429 Nürnberg

tel: 0911 40100-40 fax: 0911 40100-30 nuernberg@cdmsmith.com cdmsmith.com

Wasserrecht Wachsenberg

Bauwerksplan Regenüberlaufbecken


	Gezeichnet	Geprüft	Freigegeben	Projekt-Nr.	Plan-Nr.	Bericht-Nr.
Datum	18.10.2024	18.10.2024	18.10.2024	295809		1
Name	rtt	ueb	ueb	Phase	Maßstab	AnlagenNr.
Dateiname	295809-2-01-0	001-WACHSENE	BERG-LP_20240	B22.DWG LP 4	1:50	8.4

Anlage 8.5 Lageplan der

Bodenfiltrationsanlage mit Schnitten und Details

(Originalplan von Ingenieurbüro Stein;

keine Änderungen durchgeführt)

